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Abstract. We define multi-colour generalizations of braid—monoid algebras and preseni explicit
malrix representations which are related to two-dimensional exactly solvable lattice models of
statistical mechanics, In particular, we show that the fwo-colour braid-monoid algebra describes
the Yang-Baxter algebra of the critical dilute A-D-E models which were recently ingroduced
by Warnaar, Nienhuis and Seaton as well as by Roche. These and othier solvable models related
to dense and difute loop models are discussed in detail and it s shown that the solvability
is a direct consequence of the algebraic structure. It is conjectured that the Baxterization of
general multi-colour braid-monoid algebras will lead to the construction of further sclvable
lattice models.

1. Introduction

The study of Yang-Baxter equations [1] has revealed a rich underlying algebraic structure in
integrable systems with applications ranging from statistical mechanics to knot theory. Most
well known among these algebraic structures is the quantum group, However, Yang—Baxter
algebras are intimately connected to a number of other algebraic structures, most notably
the braid group [2] and the Temperley-Lieb [3] and Hecke algebras [4]. The braid and
Temperley-Lieb or monoid [3] operators were first combined into a single algebra in 1987
by Birman and Wenzl [6] and independently by Murakami [7]. Subsequently, generalized
braid—monoid algebras were introduced by Wadati et af [8]. On the one hand, these algebras
are related to certain two-dimensional exactly solvable lattice models. On the other hand,
the braid—monoid algebras admit a simple diagrammatic interpretation which points to the
connections with the isotopy of knots and links, In this paper, we consider 2 generalization
of the braid-monoid algebras where each strand or siring of a link is assigned a colour.
Some representations of these extended algebras correspond to the Yang—Baxter algebras
of new critical solvable lattice models recently obtained by the Amsterdam group [9]. In
particular, the two-colour algebra is related to the dilute A~D-E models {10, 11].

The paper is organized as follows. We begin by defining the multi-colour braid~monoid
algebra in section 2, A graphical interpretation is presented and a generalized notion of
crossing symmetry is introduced. In section 3, we consider matrix representations of the
multi-colour algebra and give explicit expressions for different types of representations.
Section 4 concentrates on the two-colour case and the relation to exactly solvable models.
The Yang—Baxter algebra of several RSOS models, vertex models, and mixed vertex—
RSOS models is shown to be described by the two-colour algebra. Qur main point,
however, is that the algebraic structure is actually sufficient to guarantee that the Yang—
Baxter equations are satisfied and hence yields the solvability of the models. We conclude
by summarizing our results and give an outlook on possible consequences and further
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investigations. In particular, we conjecture that the general multi-colour braid—monoid
algebra can be Baxterized [12] to obtain new exactly solvable lattice models, Before
proceeding, we point out that coloured braids and links have been considered previously
by Akutsu, Deguchi and Wadati [13-17]. However, the developments of these papers are
unrelated to the present paper.

2. Definition of the multi-colour algebra

The (x1 + 1)-string m-colour braid~monoid algebra is the associative algebra generated by
the unit element 7 (i.e., fx = xI = x for all elements x of the algebra), central elements
V0@ and & (1 < @ € m) together with three sets of generators

(i m(n + 1) ‘projectors’ P(“) <j€n+,1<ae<m

(i} m%n ‘coloured Temperley—Lleb operators e‘f’m

(iii) m2n ‘coloured braids’ &% (;.m = b&“’m and ‘coloured inverse braids’ b”‘f‘ﬁ )
which fulfil the following list of relations:

(i) projector relations:

P(ﬁ)P(ﬂ) — 5 P(ﬂ)

i o
a=]

(ii) braid relations:

—(B.a) (e, B) _ plBa) —(d’.ﬁ) &) plB)
b= Ppled) . plhary= B o p p&)

biy.a) b(d.ﬁ) — b(“ ,B)b{y.s) for |j -k >1 (2.2)
b;ﬁ?)b(y‘ﬂ)bfﬁ;ﬁ) = b(a’ ﬁ)b(J’rmb(?’#}
(iii) Temperley-Licb (monoid) relations:
e(jﬁ-)’}e(ju.ﬁ} = Q(mef;!-?)
el Vel B = PN for |j—k| > 1 (2.3)
W?J AL (Gfﬂ) = fﬂ?)P
€jEl ¢y € Tirasnn
(iv) ‘twist’ relations:
eV = pPN  for |-kl > 1
b‘f"” et;r.m — m‘”’e‘;"m 24

(e ) ey | (e} (o,B)
€; bJ, =we;

{v) braid-monoid relations:
(r.8) 3 (¥, .B) (a.B) (e.f) (r.oz) (ro) (r.ﬁ) (e,y}
bisb ey =€, b by ¢j €in

b(ﬁ wb(ﬂ . ¥) (tx.ﬂ) (u ‘B’b‘f_’;’b‘“ W) ety.ﬁ) (ju.r) (2.5)
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(vi} compatibility relations between projectors and braids:

b*(f"’)Pffw - thlbi @ for j £k k+ 1

+(Ay) pled ) :I:(ﬂ.?)__ +(B.¥)
b i P =P b = §, pb }

J+1

:!:(ﬁr) } )] :h(Br) + (B,v)
b P‘“ P®b =&, b* ]

L=
(vii) compatibility relatmns between pro}ectors and monoids:

(ﬂ?)P(U)__PﬁI) By} fo‘l‘j%k,k“"l

(ﬂ,y)P(a) (ﬂ.‘f)P(ar) =8y (.5 ¥)

P(ot) (ﬂ,}') Ptor) (ﬂ?) (ﬁr)

= daye;

2.1. Graphical interpretation

7437

(2.6)

2.7}

The algebra defined above allows a graphical presentation acting on » + 1 strings which
themselves can be thought of as composite objects consisting of m “coloured’ strings each.
In the pictures below, we are going to represent the ‘full’ (‘uncoloured’) string by a bold
(thick) line whereas strings with a colour are represented by a thin line carrying the colour
index. Our pictorial view of the generators looks as follows. The projectors Pj-“’ are

represented by

i

o
o}
Pj I | o | l | I o l |

1 2 i=1 1 j+2 n on+i

or more simply by

[+
(e} —
po o | ||
o

1 2 J-1 J J+1 j+2 n n+1
since we can always muitiply with the identity

RN

1 2 i—-1 i i+1 n n+1
The coloured braids, inverse braids, and monoids correspond to the diagrams

SRR

1 2 J FE 2 T ] n41

I J+1

1 2

i+2 n n+i

(2.8)

29

(2.10)

(2.11)

(2.12)
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f B
PR I I | U,_\ | l I (2.13)
j o o

1 2 J=1 Joooi+l j+2 noon+l

Multiplication corresponds to concatenation of pictures where we use the convention
that the product A - B corresponds to glueing the picture for A above the one for B (hence
if one thinks of the generators as operators acting on states (to the right) then the ‘time-
direction’ points upwards). Any picture with an incompatible matching of colours is zero,
Diagrams which can be transformed into each other by continuous deformations of strings
{without affecting the colours of strings, of course) are equivalent. All the defining relations
of the multi-colour braid—monoid algebra can be visualized in this way. To illustrate this, we
present pictorial versions of the main defining relations as examples. The projector relations
(2.1) and the compatibility relations (2.6) and (2.7) follow from the requirement of matching
colours alone. Also, the commutativity of operators acting on different strings is represented
in the diagrams in an obvious way. For the remaining relations, the corresponding pictures
are given in the sequel. The braid relations (2.2} give rise to the following diagrams

(2.14)

<
o \p a/ B o B

b+t i i+l i+

B j
1 j ]+1 j+2

]
Y
il

RN

where here and in what follows we only show the relevant part. The multi-colour
Temperley-Lieb relations (2.3) are

= "
”O” = LN (2.16)

w J F+1
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which means that a closed loop of colour ¢ in a diagram can be replaced by the diagram
without the loop multiplied by a factor / Q'@ and

k=3

Yu}’

¥ ¥ B
U .17
al o B

J F+1 j+2

] ma ,
i J+1 j+2

together with its mirror image. The ‘twist’ relations (2.4) have the following pictorial

interpretation:

8 B 8 8
p " =~ "
] B _ ) m o L PGy m (2.18)
[+ a [+ [+
o K—\ @ J J+1 P \ o J J+1
jooi+l i i+l
i.e., undoing a ‘twist’ in a string of colour ¢ produces a factor . Finally, the braid-
monoid relations (2.5) look as follows:

ﬂ/r
Y uma y \a « J j+1 j+2

Poooj+r j+2 i f+l j+2

3\—/.5 ¥

/

(2.19)

the second relation in (2.5) being again just the mirror image of the above.

This completes the list of defining relations. The pictorial presentation is useful since it
allows to simplify products of operators in a fast and easy way. More importantly, however,
it shows that there is a close connection to the theory of coloured knots and links and it
should be possibie to derive invariants for the coloured objects in the same way one obtains
invariants for knots and links from the usual braid-monoid algebra (see e.g. [8] and [18]).

2.2. Generalized crossing symmetry

Before we commence to investigate representations of the multi-colour algebra, let us
introduce a generalization of the so called crossing symmetry which is actually a built-in
feature of the algebra, The notion of crossing symmetry originates in scattering theory and
was introduced in the context of statistical mechanics models via the close relation of exactly
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solvable two-dimensional statistical models and completely integrable quantum systems in
one dimension (where the Yang—-Baxter equations guarantee the factorization of S-matrices,
see e.g. [8]), (cf the discussion of crossing symmetry in solvable models in section 4.1
below). We do not aitempt to formulate crossing in full generality but we rather present
some simple examples which clarify our notion of crossing. Since the colours of strings
are not altered by crossing we neglect all the colour indices of the strings for the moment.
However, one should bear in mind that each string is meant to have a definite colour in
the pictures below (or that one anyhow looks at the one-colour case). This restriction is
necessary here since we do not have an interpretation for crossing of the projectors.

To explain what we mean by generalized crossing, we use the graphical interpretation
of the algebra. Essentially, if one has any (sub-) diagram (symbolized by a rectangular box
in the figure below) with £ in- and out-going (coloured} strings, applying one generalized
crossing step (‘crossing generator’} means that one changes the interpretation of two strings
as follows:

1 2 @-1n ¢ 1 r -2 @¢-1y

1 2 £=1 2 3 £ A
¢ (2.20)

i.e., one in-string is converted into an out-string and vice versa. Note that the relative
order of the strings is maintained. The diagrams that one obtains in this way can again be
interpreted as representing products of generators in our algebra (no projectors), although
one might have to add additional strings as shown in the example below:

1 0 o r

__/
_ - @.21)
f /
2 2

AN
2 { \
2 3 3 4
The labels (0, %) and (3,3") for the additional lines are motivated by the fact that the
last diagram can also be obtained by two generalized crossing steps starting from the same
diagram as in equation (2.21) but with two additional vertical lines 00" and 3—3' adjoined
to the left and to the right, respectively,

As already mentioned above, we cannot give a natural interpretation of crossing for
the projectors since they only act in one direction. Nevertheless, we certainly can ‘cross’
straight lines that have a definite colour from the beginning (i.e., one thinks of the operators
acting on coloured strings already which means that the projectors just act as the identity)

—
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to obtain coloured monoids as follows:

£ o @ 2
— \—J —
B ﬁmﬁ B

o

@ B B « B
_/
_ =T
‘Q & Q o

(2.22)

o

and for the coloured braids one has
B o o B [ ¢
\/ — K — y (2.23)
S Ns NN
Of course, one always comes back to the operator one started with after (at most) four
generalized crossing steps (for £ = 2, in general one needs 2£ steps).
Crossing symmetry now means that if one has a relation in the algebra and performs
a generalized crossing transformation on both sides of the equation, one obtains—possibly
after adding strings in order to be able to interpret the resulting diagrams as representing
products of generators of the algebra—another valid equation in the algebra. Of course,
adding strings has to be done the same way on both sides of the equation.
To conclude our excursion with an instructive example, we show how one of the braid—

monoid relations of equations (2.5) and (2.19) is crossing-related to the simple fact that 2
braid multiplied with its inverse yields the identity. In the coloured case, it looks as follows

B ¥ /ﬂ B ¥ o

: i (2.24)

By ) B ¥ 8y ) B ¥

¥ \d o ¥ ama

i J+l j+2 J i+t j+2

This also means that one could significantly reduce the number of defining relations of the
multi-colour algebra by imposing crossing symmetry. We chose not to do so since it is not
easy 1o implement crossing algebraically. That also explains why we used the diagrammatic
interpretation of the algebra in the above discussion.
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3. Representations

In the context of exactly solvable models, we are interested in representations of the multi-
colour braid—-monoid algebra where the central elements / Q@ and ©'® (1 < o € m) are
represented by numbers and where the following equations hold

f‘”‘(b‘;"“’)p(f‘“) =0 (3.0
f(w.ﬂ) (b‘jﬂ-a)bgfhm)p(}*ﬁl =0 (3.2)
gfc!] (b(}!.fﬂ)p(;!,ﬂ‘) = e(}'v‘ﬂ 3.3)

where f®(z), f@FY(z), and g®(z) (1 £ @, B < m) are polynomials in z and where we
introduced ‘two-site projectors’ p‘f‘m by
PP = PP PP (3.4)

as a convenient abbreviationf. We regard the above relations (3.1)~(3.3) as properties of
the representations rather than defining relations of the algebra since the actual numbers and
polynomials are model-dependent quantities.

The following remarks are in order.

(1) For the one-colour case (m = 1) the algebra defined above reduces to the well known
braid—monoid algebra (see e.g. [8)).

(i1) From any representation p of the one-colour algebra which acts in an (n + 1)-fold
tensor product space

n+l n+l

o: ®Vk — ®Vk (3.5)
k=1 k=1

one can obtain representations o™ of the m-colour case as follows. As representation space
atsite j choose the m-fold direct sum V; = V(J-”GBV?)GB. . .EBVS,.'”) of the corresponding space

of the one-colour representation V™ 2 V; and represent the operators Pﬁ-‘” lsasm
by the orthogonal projectors onto the m subspaces V?’} at site j. From the compatibility

relations (2.6) and (2.7), it follows immediately that b* ?’m and eﬂf"m can act non-trivially
between certain subspaces only. Defining

@.8)
b ;;" \@k Y@, Y = ( n 3n.5i)Smn'alﬂaﬂ‘n“@b?! (3.6)
kst f, j+1
(a.f) _
¢ |®x y L@ U T (k#gﬂ 87’*-5*)8"-1’1vw+=35’5,"5}+:el (3.7
where the products over & run from [ ton+ 1 and
!
Sar,10nr = | | Barn (3.8)

k=2

one obtains a representation of the m-colour braid-moncid algebra with /@' = /O,
o = w, fN2) = f(2), M@ = f@f(~2), and g¥(z) = g(z) for all @, B =
l,...,m. Here, the quantities without colour indices o or 8 refer to the one-colour case,
In particular, this shows that there exist representations of the m-colour algebra for any m.

t Of course, it is possible to use p" instead P{* to define the algebra from the very beginning. We choose o

do otherwise since in our view, the P;‘" are the more basic objects.
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(iii) Conversely, starting from a representation of the m-colour algebra (m > 1), one can
recover part of the one-colour relations for the *full’ or ‘uncoloured’ Temperley-Lieb and
braid operators obtained by summing over all colours. To be more precise, the operators
B defined by

m
BE= ) (cPy*ip® () 39
a,f=1
with ¢'=# e C\ {0} fulfil the braid algebra relations (2.2) and the operators E ; defined by

m oA (@.8)
Ej= Y (Fﬁ)ef (3.10)

o, f=1

(¢ & C\ {0}) generate the Temperley-Lieb algebra (2.3) with /O = Y o,/ 0@,
However, the relations (2.4) and (2.5) between these two types of operators are in general not
satisfied by B:*-' and E ; as they are defined in equations (3.9) and (3.10) above. In particular,
the algebra generated by the *full” braids and monoids in general becomes non-Abelian at
one site j. The relations (2.5) hold if and only if e = 1 foralla, g =1,...,m.
Equation (2.4) is fulfiled with twist w if and only if c*®w® =@ foralle = 1,...,m.
Hence the full set of relations can only be recovered if 2l the twists @ coincide up to a
sign. It should be added that whereas one again has polynomial equations in the ‘full” braidt
B (3.1) one obviously cannot write the ‘full” Temperley-Lieb operator E ; as a polynomial
in the braid 8 (3.3) (uniess all e(j“’ﬂ ? with o # f are represented by zero matrices).

In what follows, we construct three classes of representations for the m-colour braid-
monoid algebra. These representations are related to exactly solvable lattice models of
statistical mechanics as we are going to show in section 4.

3.1. Vertex-type representations

Representations of the (one-colour) braid—monoid algebra which are linked to vertex models
(see e.g. [B]) are of the type (3.5), i.e., they act in a tensor product space. Therefore,
equations (3.6) and (3.7) give m-colour generalizations of this kind of representations.
Here, we construct a different multi-colour generalization of the representation of the
one-colour algebra related to the six-vertex model (see e.g. [8]) which is the simplest (non-
trivial} vertex model related to the affine Lie algebra A ! 119,20]. The representation of
the m-colour braid-monoid algebra acts in the space (V)% with V = €? according
to the two possible states {(arrows) of the six-vertex model. The operators P}“’, b (}r.ﬁ),

and e‘}’"ﬁ ! act as the identity in all but the space (V™) (for Pj-“)) respective (V™) with
k=j,j+1 (for b* (}r.ﬂl and e‘f’ﬁ’), ie.,

j=1 n+1
P;m=(®l)®;,m®( R 1) @3.11)

k=1 k=j+1
@B i) i) pa
e - (Q1) e e ® 1 (3.12)
k=1 k=j+2
i=1 Al
e(;r,ﬁj = (® 1) QP @ ( ® 1) . (3.13)
k=1 k=j+2

1 This follows from the fact that there are only finitely many independent products of coloured braids which eater
in the expressions for the powers of the “full’ braid B8,
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Here, P V™ —, VM aots as a projector onto colour «

Pm=(@o)ele( 45 ) (3.14)
B=0+1

whereas b* @#" and ¢# both map V™ @ V™ —» V" @ V™. As above (see equations (3.6)
and (3.7)), the compatibility relations (2.6) and (2.7) imply that 5% “#’ and ¢*# can have
non-zero matrix elements in certain subspaces only, In these subspaces, they are given by
4 % 4 matrices with elements

) +1 +1-(s+5"}/2

»E® a)|vtﬂ>®vf"—»v("®v("’)(s,z).(s',r') = (k™) (S 08y, — (x@) s+5")/ 858 —) (3.15)
@,

&= msvmwm_,vwavm)u.n.w.r') = 8srde. fora # 8 @.16)

(ewlﬁ)IV'“@V""—*V“’@V'ﬂ’)(;,r),(s',t') = (x(ot))—s(x(ﬂ))“‘" 8,18y, —p G107

where s,2,5',t' = +1. Here, x® = exp(iA®) and 4@ = —iexp(—ir® /2) = 1/(ivx@),
and A‘® are arbitrary (real or complex) numbers which one can choose independently for
any colour «.

The above representation (which we denote by (6-V,6-V,...,6-V)) is characterized by
VO = 2cos(A¥) = x'* 4 1/x@
@ = _(k(am)—3
F®2) = (z ~ ™)z — k) (3.18)
feP (@) =21 (CE )
g(a) (2) = k'@ (z - k(a)) )
Note that even in the case of m identical values of A% = A this representation is in general

different from the representation given in equations (3.6) and (3.7). This is obvious since
FP(z) =z — 1 here whereas P (z) = (22 ~ @?)(z% — k%) in the other case.

3.2. Representations labelled by graphs

Consider m (connected) graphs G, 1 € o < m, with L nodes (enumerated by
a® = 1,..., L") where any pair of nodes is connected by at most one line (bond).
Connectivity is not really a restriction here, in fact one can always think of the connected
components of one graph as separate graphs. Note that we do not have to assume that
the graphs are simple, i.e. that each line connects two distinct nodes. In what follows, we
denote by N = (1, ..., L®} the set of all nodes of G,

To each graph G'* we associate an adjacency matrix A®@, This L x L® matrix has
clements

1 if &'*) and b are adjacent in G
A s = A 2o ) ! 9 19
at®.b bo.a® = g otherwise
where ¢, b ¢ (1,..., L} are adjacent if the nodes a'® and 5@ in G’ are connected

by a bond. In other words, the adjacency matrices considered here are characterized by
being symmetric matrices with all entries 0 or 1 and by vanishing elements on the diagonal
in the case that the corresponding graphs are simple. We denote by

A = 2cos(A™)) = x4 1 /5@ (3.20)
= 260548 = = ()" + ™) @3.21)
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the Perron-Frobenius eigenvalue of 4™ and by Sj(") (1 < j < L9) the elements of the
corresponding eigenvector, i.e.,

Ll

o o

;.Af 15 = g (3.22)
The two different parametrizations in equations (3.20) and (3.21) will prove useful below.
Note that whereas for fixed A‘® there is only one value for A} {modulo 2x and up to
a sign which is irrelevant here) there are in general four different values for A 7@
A = U@ £ )74 and T = U & 37)/4.

Consider the Cartesian product G = GV x G® x ..« x G™ of the m graphs. It has

L = [T, L' nodes labelled by N = N x N @ x. .. x N and hence the corresponding
adjacency matrix A is an L x L matrix given by

m
A=A X AP x - x A =Y A (3.23)

, namely

where A" is the L x L matrix with elements

:&; = ( l—[ it bu”) a{w\ By (3.24)

Bt

and we use m-tupels 2 = (&'V, 2@, ..., 2"™) € A to enumerate the nodes of G (which we

aiso cail “states” or ‘heights’ in reminiscence of the role they play in the solvable models).
The basis &, of our representation space for the (n 4 1)-string m-colour braid-monoid

algebra is now given by all allowed {1+ 1)-step paths in the graph G, that is by the following

set

n+1
N, = [a = (ag, 41, ....an,a,,+1)[aj e N and HA,,‘_,_‘,‘ = 1} (3.25)
i=1
which forms a subset of the (r +2)-fold Cartesian product of the set . Then the following

equations define a matrix representation of the m-colour alpebra on the space spanned by
Ny:

n4-1
(PfYap = ( ]'[aa, b*) 0 (3.26)
)
(b:I: (o0 Yap (n‘sak b*)( kta)) ab ;Af:f)a,“ AE:T_)_ .
kEj
1 /S, S
F(NT ;fz LIPS Af,‘;"b ) (327
aj,.[
(e, B}
B* T yap = (]’]aa, bk)A,{,‘:’j b A A AR {@#p) (3.28)
k#f

‘ (52,55
(elf m)“'b = (n aa*'b*)ﬁdl-lvahl ;!2 : A::)hbf Attymafﬂ (3.29)
k#j -1

where a = (gp, a1, ..., anp1), b = (b, by, ..., byry), and where

1 -
K= ivxte =~(y) ’ (3.30)

fixes the scale of the braids b‘}”'"’ such that equations (2.5) are satisfiedf. These

%+ Note that equations (2.5) fix the scale of the braids up to a sign,
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representations are characterized by (cf equations (3.1)-(3.3))
V@ = A®
w® = __(k(a])"3
7)) = 2 — o)z — k) (3.31)
foPE) =z2~1 (a # B)
g“’”(z) = k(a)(z - k(ar))

For the one-colour case, the representation defined through equations (3.26)(3.30)
reduces to the representation related to the Temperley-Lieb interaction models [3,21,22].
These are critical IRF models {23] if the underlying graph is a Dynkin diagram of a simply
laced Lie alpebra or of the corresponding affine algebra [22]. They include, for example,
the critical A-D-E lattice models of Pasquier [24, 25, 26] (which in turn include the ABF or
RSOS {restricted solid-on-solid) models {27]) and the CSOS (cyclic solid-on-solid) models
[28-30]. For this reason, the present class of representations will frequently be referred to
as the "RSOS representation’ below,

The apparent agreement between the polynomial relations satisfied by the vertex-type
representation (3.18) and the Present case (3.31) is not coincidental. If one considers the
representation labelled by (AL}, LATG,.. .. ,A)) and performs the limits L™ —— oo with
A® = rst® L@ () < 59 < LI®) 5@ and L™ coprime) fixed}, one obtains an infinite-
dimensional representation of the m-colour algebra which nevertheless is related to the vertex
representation (3.11)~(3.17) of the (n + 1)-string m-colour braid—monoid algebra with the
corresponding values of A% In the limit, the dependence on the actual heights vanishes—all
that matters are differences of heights, Since for any colour there are only two possibilities
(height either increasing or decreasing by one), one can go over to a description with only
two states which is the corresponding vertex-type representation. This is nothing but the
usual SOS (solid-on-solid)-vertex model correspondence [31] (sometimes also referred to
as the Wu—Kadanoff~Wegner transformation, see {32, 33]) which will also be reflected in
our examples of solvable models below.

3.3. Mixed representations

As ‘mixed’ representations (6-V,6-V,...,6-V,G,GP . G"=)) we denote representations
of the m-colour braid-monoid algebra in which my colours appear in the vertex-type
representation and the other mp = m — my in the RSOS representaiion iabeiled by the
mp graphs G, G2, .., G"=), For simplicity, we assume that among these all graphs are
simple.

Due to the mixture of degrees of freedom on vertices and omn edges it is more
cumbersome to describe the representation space in the mixed case. We use the notation of

section 3.2 for the colours labelled by the my simple graphs. For the vertex part, we use
the set

my
M= {s =(sM, 52 5™ 5@ e (=1,0,1} and is) = le‘“’l < 1] (3.32)
=1
which gives all possible vertex states on any edge of the lattice, Here, 0 stands for no arrow
and =1 for an arrow that points upwards (downwards) or to the right (left}, respectively.
The second condition guarantees that there is at most one coloured arrow on any edge.

1 Note that in order to do this one has to use ather eigenvalues and eigenvectors of the adjacency matrices apart
from the Perron~Frobenius one. Of course, one can use any eigenvalue and eigenvector, the only benefit of using
the Perron-Frobenius vector being that it has real positive entries only,
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The representation space N, now consists of all paths of the form

No={a = (a0, 51. 01,52, 32, ..., Gns Spi1, Auy1) |2 €N, 55 € M and

*(Ag1a = Llsl =0) or (gj-1 = a;. I3l = 1)} (3.33)
that is, whenever heights on neighbouring vertices differ by one step on the graph G, there
is no arrow on the bond. On the other hand, if there is a coloured arrow on any bond, then
it has to join two vertices with equal heights. Qther configurations are not allowed.

Now, let us turn to the matrix representations of the generators, In the case that they only
involve colours of vertex-type, the other degrees of freedom play no role and the matrices
are essentially given by equations (3.11)-(3.17). On the other hand, if only colours of
RSOS type are involved, the vertex degrees of freedom do not contribute and the relevant
parts of the matrices are given by equations (3.26)—(3.29). Hence, all that remains are the
two-colour braids or monoids where one colour corresponds to a vertex and the other colour
to an RSOS degree of freedom,

These are given explicitly by (@ # 8)

{or. ) (B (@)
(b:t_;! )a'b = (#njaﬂk-bt)(k#n lastv‘k)At(lf)l,aJ Ab; Brel ﬂj I,b‘uad_y,aﬁlasﬁ.j 0 (3'34)
5. i+
(B.x) " (e)
®* / o dap = (L—[ Eat,m) (#HH 65,:.:*)8@_,,{;,8::,,:,,“ Aaf by Afz‘f}aﬁ-‘s;‘w (3.35)
J N
€™ =118 85 )8 N I R !
i Jabp T n gty n Sty 0051 by g VK s A1,y “: WBia1 —Hle
k#y ktj i+l %)-1
(3.36)
f St
(ﬂ a)) (l—[a‘“ b*)( l_[ 8&‘&)501_“%“;“(x(“))‘m s AL‘?)“&JAL?)&H@(_'I; S
ki LIRS -1
(3.37)
where o denotes the colour of the vertex-type and 8 the colour of the RSOS-type
degree of freedom. a and b are given by a = (ap, 81,1, 52,32, ..+, Gny Sn1, @pe1) and

b= (bo,t1, 51,2, b2, . .., Bu, ty1, bry1), and 85 is defined as (3.8):

8{(2] ( l_[ 5,‘1») i) D) gloy piey

Of course, the mlxed representations are related to the unrestricted Iimit of the
RSOS representations (for the my verex-type colours) in the same way as the vertex
representations. Hence, the characteristic polynomial equations satisfied by the mixed
representation are also still the same and are therefore given by equation (3.31).

4. Two-colour representations and solutions of the Yang-Baxter equation

Some of the representations of the two-colour braid—monoid algebra defined in the previous
section actually occur in (critical) solvable RSOS models which are related to (coloured)
dense or dilute loop models (see [10,11,9]). These models gained considerable interest
after dilute RSOS models labelled by Dynkin diagrams were found that admit an off-
critical extension which breaks the reflection symmetry of the Dynkin diagram [10]. This
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means that for these models the elliptic nome acts as a magnetic field rather than being a
temperature-like variable as it is in the usual case. As a result, the dilute models related to
the Izergin—-Korepin [34, 35] (or A,f,'z) [19,201) vertex model inciude, for instance, a model
which belongs to the same universality class as the Ising model in a magnetic field [10;.
We are going to have a closer look at RSOS models which are related to ALY, A, A,
and C‘zn vertex models [19,20,9].

The representations of interest for our present purpose are representations of the two-
colour algebra where either both graphs G and G coincide or where one of these (which
without loss of generality we assume to be §@) is just the Dynkin diagram of the Lie algebra
Az, As it turns out, the first case corresponds to RSOS models related to dense two-colour
loop models [9] whereas the second case corresponds to dilute models {10,9]. To obtain
critical models whose Boltzmann weights are parametrized by trigonometric functions, the
graphs have to be Dynkin diagrams of “classical” A-D-E type or of their affine counterparts
A DM_EM,

For the case G? = A,, the above representation simplifies considerably. The
Perron—Frobenius eigenvector is just given by sz’ = Séz) = 1. Furthermore, one has
A® =1 and hence x@ = exp(£i/3). This yields ivx® = exp(2mi/3) (respectively
iv/x® = exp(ri/3)) and it follows that

e22) = 0 o = D - 0D (4.1)
or, in other words, /0@ = 1, 0@ = F1, fP(2) =z £ I, and g?(2) = Fz. In order to
comply with the usual notation (which is A® = /(L + 1) for G® = A;) we choose the
first (upper) sign, i in particular ©® = —1, Actually, since the sign of the braids is not
fixed by equation (2.5) this is nothing but a convention.

In addition, we discuss several examples of two-colour vertex models and two-colour
mixed vertex-RSOS models. These models are related to the unrestricted SOS models of
the RSOS models mentioned above. That means in particular that the algebraic description
of the vertex (respectively, vertex—RSOS model) is the same as for the corresponding RSOS
model, the only difference being that one deals with two different representations of the
two-colour braid-monoid algebra.

Our algebraic approach shows clearly that the several models listed above, albeit looking
quite different from each other, are in fact closely related and hence provide a uniform
characterization of this type of model. On the other hand, we are able to show that the
Yang-Baxter equations for these models follow from the algebraic structure alone (see
section 4.6). This means that for any representation of the two-colour algebra with the
comresponding properties one obtains a solution of the Yang-Baxter equations and hence an
exactly solvable model. A more precise formulation as a theorem is presented at the end of
this section. Finally, the common zlgebraic structure strongly suggests a plausible ansatz to
find new solvable models. We will come back to this point in our conclusions.

4.1. Local face operator and the Yang—Baxter equation

Let us (very briefly) recall the main properties of exactly solvable two-dimensional statistical
systems on the square lattice, The models are defined by specifying the degrees of freedom
(which usually live on the edges or on the vertices of the iattice) and their interactions.
There are two frequently studied types of models which are the vertex models and the
so called IRF (interaction-round-a-face) models. For vertex models, the degrees of freedom
(*arrows’ or ‘spins’) are located on the edges and the interaction takes place at the vertices
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of the lattice. We denote the Boitzmann weight of a veriex as follows:

v

u)= >£< 42)

s I
where here and in what follows the leiter # is used for the spectral parameter. On the
other hand, IRF models have their degrees of freedom (usually called *heights’) sitvated on
the vertices. Here, the interaction takes place between the four comers of an elementary
plaquette of the lattice. The Boltzmann gvcights for such a plaguette have the form

¢
w(
a
a

Of course, one can also consider face models which are a combination of both. For
simplicity, we will not give explicit expression for these models which can be handled
in a completely analogous way.

We now introduce face transfer operators (also called Yang-Baxter operators) that act
on the configuration along a row of the diagonal lattice. For IRF models, the face transfer
operator X ;(u) has matrix elements {36 37]

) 18 (4.4)

(X i)y ne = W( -1 ﬂm
ktf

where a = (ap,a1,a2,...,n, ay41) and @’ = (ay,4{,a3,...,a;, 4 1) denote allowed
height configurations on adjacent rows and n is the size of of the diagonal lattice, Here,
‘allowed’ means that we consider only those configurations which can be extended to a
configuration on the whole lattice that has a non-zero Boltzmann weight. For vertex models,
the face operators have the following matrix elements [38,39]:

W( wu

u) =d P (4.3)

S!

X i(u =W J+1 8 o . 4.5
(X j@))es (sj o )M];[+1 @5)
Here, 8 = (51,52, ..., 5, Sn+1) and 8’ = (57, 53,...,5,, 5,,,) denote arrow configurations

along rows of the diagonal lattice. In fact, the Yang—Baxter operator of a vertex model can
be written as a tensor product X ;(#) =/ ® 7/ ®...@ X(#) ®... ® [ where [ denotes the
identity matrix and the local operator X (u) covers the j and j + 1 slots. In both cases, the
Yang-Baxter operators X ;(u) are local operators in the sense that, except in the vicinity of
site j, they act as the identity.

If we assume that the Boltzmann weights (4.2) and (4.3) satisfy the Yang-Baxter
equations, the corresponding local face operators X ;(u) (equations (4.4) and (4.5)
respectively) generate the so called Yang-Baxter algebra [23, 39, 40%:

X)X (e + )X ;) = X j ()X (e + v)X j(u)

XX (v) =X (X ; () fortj—&}> 1.
The first equation essentially is the Yang—Baxter equation while the second follows from
the local action of the Yang—Baxter operators., The Yang-Baxier equations guarantee the
solvability of the model since it follows that the row transfer matrices of the model form a
commuting one-parameter family which yields an infinite nember of conserved quantities.
Usually, one requires that the Boltzmann weights have additional properties besides fulfiling
the Yang—-Baxter equations. Two of them, the standard initia! condition ({value of Boltzmann

(4.8)
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weights at x = 0) and the inversion relation (unitarity condition), can be formulated directly
in terms of the face transfer operators, They result in the relations

X0)=1i (standard initial condition)
X)X, (—u) = o(u)o(—u)l (inversion relation)
where p(u) is a model-dependent function of the spectral parameter. The inversion relation
can actually be derived from the Yang-Baxter equation and the standard initial condition.
Another important property of many exactly solvable models is the so called crossing

symmetry. Since it cannot be simply described in terms of the local face operators, we go
back to the Boltzmann weights. For IRF models, crossing symmetry means

{47

¢ _{t@¥©@\" ad,_,] )
v (o) -Goma) w4 s >
and for vertex models, one has
wy rr\? ¢ 5
w( v u)-—.(w) w( T |a-u) . 49

Here, A is the crossing parameter and vr(a) and r(s) are crossing multipliers [36,39,40]
which are complex numbers and do not depend on the spectral parameter. For the vertex
models, § = —s means the charge conjugated state of s and the crossing multipliers
satisfy r(s) = I/r(s). The presence of crossing multipliers means that the Boltzmann
weights are not invariant under rotations in general. However, the crossing multipliers
of adjacent vertices (respectively, plaquettes) cancel each other and on a periodic lattice
(which means periodic in both directions) they do not enter into the partition function at
all. This is an example of the more general concept of gauge equivalence. Two models are
gauge equivalent if their Boltzmann weights are related by a gauge transformation. In the
present context, these are transformations of the Boitzmann weights which do not change
the partition function of the model on a lattice which is periodic in both directions. A
general local gauge transformation therefore has the form

¢ Fid,c;u)G(d, a; u) ¢
W( d"b |u) = F(a.b:u)G(c,b;uJW( % u) @.10)
for IRF models and
wy Fv; u) G(w; u) wy
W( e u)H————F(S;u)G(I;u)W( e u) @.11)

for vertex models. In both cases, F and G can be arbitrary functions which are also allowed
to depend on the spectral parameter ». Of course, quantities which are not determined by
the partition function on the periodic lattice alone may depend on the particular gauge. For
instance, the Yang—Baxter algebra of a solvable model can depend on the gauge. For an
example, see the discussion of the Aéz’ vertex madel below.

4.2. RSOS models labelled by the pair (G,Az)

The two examples of sclvable RSOS models we want to consider here are related to the
A and A vertex models [19,20]. As these models are defined in [10] and [9], they
are labelled by one simple graph G (which is of A~-D-E type for critical models) and in
addition the height variable is allowed to stay at the same value for adjacent sites, i.e. the
actual adjacency diagram @ is obtained from G by affixing a circle at each node of G. For
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G = A, for instance, G thus looks as follows:

QO QO Q ... 0O O 4.12)
1 2 3 4 L—-1 L

In order to interpret this model as an RSOS model labelled by a pair (G, Ay) of
graphs, we double the number of heights. That is, instead # € § we have two heights
(2, €} € (G, Ay) with € € {1, 2} and hence we have two copies of the graph §. The circles
are now replaced by lines connecting the heights (a, 1) and (a,2) in the two different
copies. Thus what we get is the graph G x A; which for our above example G = A; looks
as follows:

{1,2) 2,2 3.2 4,2) (L-12) &2

(4.13)

an 2.1) 3.0 4,1 (L=-11) (L1}

The graph G x A; possesses a natural Z; symmetry ((a, €) ~—> (@, €)) with € =3 — € and
by taking the quotient (G x A3)/Z; = G, one recovers the graph G. This, of course, is a
rather trivial example of the orbifold duality of Fendley and Ginsparg [41].

There is an exact one-to-two correspondence between ‘G-allowed” faces and ‘G x Ag-
allowed’ faces

(5 (C» 6;)
d b “— d.eq) b, €p) (4.14)

a (a! Eﬂ)

since choosing for instance €, € {1, 2}, the values of €, €. and ¢, are determined by
€y = Eadq,p + €a(1 — 84,5)
€ = €0y + €p(1 —8pc) (4.15)
€ = &bca+€(1—8.4)

where & = 3 — ¢. It is therefore obvious that for any ‘G-allowed’ configuration on a
square lattice there are exactly two ‘G X Aj’-allowed configurations. Hence, choosing the

face weights to be
dc
u) = W( b

(d. eq)(c, &)

W( (@, €aMb, €n)
independent of the value of ¢, with W( :; u) denoting the face weights of the dilute
A-D-E models [10], these two configurations have the same weight and one obtains a

solvable model with adjacency graph G x A; whose partition function is just twice the
partition function of the corresponding dilute model with adjacency graph G.

u) (4.16)
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As our first example, we consider the dilute model which is related to the Ag“ vertex
model [9]. The local face operator (4.4) for this model can be written as follows:

X, ) = sm(z( - )( an -|—p(22})+(pf;21’+p[}2”)
sin{u) 4y, 412, LD
sin(}) ey H Byl @I

where the braid and monoid operators are understood to be the matrices of the representation
labelled by (g Az) and A = A", Obviously, the model is not crossing symmetric since
p f ? and p ) enter in X j(u) with a coefficient one whereas the corresponding “crossed’
objects e“ 2’ and e(2 " do not show up in the expression for X j(u) at all.

The second cxamm;-. is the dilute model related to the A;z; vertex model (Izergin—Korepin
maodel) [10,9]. Its Yang-Baxter operator (4.4) has the form

sin(2x — w)sin(3A — ) .1y sin(@) sin(3h — )\ 23
Xj () = PP j’ 1+ T N o i
sin(21) sin{3)) sin(2A) sin(3A)
sin(3% — u)( Wy 4 o n) sin(u) sin(A — ) (wn
sin(3%) sin(22) sin(3%) 7

sin(w) a2, b, S0@) sinGh—u) a2, e

iyt + ey 4 — —— (b, + b 4.18

sm(SA.)( i) sin(2%) sin(32,) @ e *.18)
with T =X, As one recognizes from this expression for the local face operator X;(u),

the face weights are manifestly crossing symmetric. The crossing parameter of the model
is 3A.

We choose this model as our main example since it is particularly interesting. Not
only does the G = A; model with L odd allow an off-critical extension which breaks the
reflection symmetry of the Dynkin diagram A [10], but the Yang—Baxter algebra (4.6) of
the critical model is also non-commuting at one site:

[X, ), X; ()] # 0. (4.19)
Of course, this implies that the ‘full’ braid B obtained from

X; G0 it 12 21 2.2
& +{E1) +(1,2) + (2. (2.2
B —y:ﬂ u}#{:im o(u) =b i +b i +b b -b / (4.20)

with y = exp(ir), 579 = —p?? (cf equation (4.1)) and the ‘full’ monoid E; which is
given by

E;=X, (33') — e“ J) +e“ 2 +e(2 By (2.2) 4.21)
(€%? = p?™) do not commute. Here,

o) = sm(22_L - E) sx.n(SJ_L - u)
sin(2A) sin(34)

is the function that enters in the inversion relation (4.7). It is therefore obvious that

this model cannot be described in terms of the usual {one-colour) braid-monoid algebra.

Furthermore, in the general case we were not able to find a gauge transformation (4.10) of

the face weights which results in an equivalent model (i.e., a modei with the same partition

function on a torus) with a commuting algebra at one sitef.

{4.22)

i We found such a gauge for the model labelled by G = A‘L“ {cf the remarks on the gauge of the A;z) vertex
model below).
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It is not possible to express the local face operator X ;(u} in terms of the ‘full’ braids
and monoids alene. One has to add at least one additional operator, which for instance one
catt choose to be

Fy=pilaell 4 p%8 4 @9 o p00 4 00 4922 (423
This yields
X ) = sin(3% ~u) | sin@) | sin(})sin(Z
/ sin(3%) sin(3%) © | sin(2%) sin(3%)
3% oI o 3T -
X [cos (—2-)(3; + B;’l) + (e—::%—u)Bj + ex(%—-u}le)]
41 SRGA W) sin®) o (4.24)
sin(3A) sin(3A)

The relations for the ‘full” braids and monoids and the additional operator F; can be
computed from the relations for the coloured operators. As it turns out, the ‘full’ monoid
E; (4.21) fulfils the quadratic

(EP=0-y -y HE; =1 - 2cos(4R)E; (4.25)

whereas the “full’ braid 8; (4.20) and the additional operator F; (4.23) satisfy the following
quartic equations:

(B;—1}(B;+1)(B;+y71) (B;—)°1) =0 (4.26)
Fi(Fj=D(Fj~2N)(Fj=(=y*~y™i) =0 . @27

The commutator of the braid and the monoid fulfils a simple cubic relaticn
1
C;= }-iT:—l{B*.,E,] CHAC; —DIC;+DH =0 . (4.28)

Furthermore, one finds the following commutation relations:
[F;, B3] =0 [FiLEl=—-Q+3 +y9C; (4.29)

to present just a few of the many relations that one can derive from the two-colour algebra.

So far, we have only considered some relations of operators at the same site. It tumns
out that the ‘full’ braids apd monoids in fact fulfil all defining relations of the one-colour
braid—monoid algebra except the twist relations. In particular, the one-colour braid—monoid
relations (2.5) are satisfied. This actually follows from the third remark we made in the
beginning of this section (see equations (3.9} and (3.10)). However, we want to emphasize
again that neither E; nor F; is a polynomial in the braid B;. To describe the algebra
completely in terms of B;, £;, and F;, one needs of course additional relations with
operators acting on two neighbouring sites which involve the operator F; and which can
be derived from the corresponding relations of the two-colour algebra.

As we demonstrated, one can alternatively describe the local Yang-Baxter algebra of
the dilute model in terms of the (spectral-parameter-independent) operators B, E ;, and F.
However, it should be clear from this exercise that the formulation using the two-colour
braid—-monoid algebra has several advantages. It is simpler and certainly more natural in the
sense that the two-colour algebra is a siraightforward generalization of the Temperley-Lieb
algebra and that it stiil allows a graphical interpretation and therefore is related to properties
of coloured knots and links.
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4.3. RSOS models labelled by the pair (G.G)

Again, we present two examples, one of which consists of a series of crossing-symmetric
models. The models considered here are the dense two-colour loop models of [9). We
are going to have a closer look at the RSOS models related to C2 since these models are
crossing symmetric,

First, let us have a brief look at an IRF model related to the A”) vertex model [9]. The
Yang—Baxter operator (4.4) for the model reads as follows:

n(A
X,) = si (n( )u)( 0 4 pB2y 4 (pth? 4 2y
:;:E:;( L0 g 22 4 512 4 p2D) (4.30)

where A = AV = A® s determined by equation (3.20). As for the models defined by
equation (4.17) above, this model does not possess crossing symmetry. Again, the two-

colour monoids e‘f“ﬁ ' # ) do not enter in the expression for the local face operator at
all.

‘We are more interested in our second example which is the above mentioned IRF model

related to the C‘z” vertex model [9). The local face operator (4.4) of this model has the
form

sin(2A — u) sin(6A — u sin(6x — u)
Xiu) = ( ) ( D +p(;.2)) t, 2)+p(2 n)

sin(2A) sin(6) sin{6x)
sin(u)sin(4x — u) ¢ . . @D sin{x) (1,2 4 20
- = — N DY 4 + %
sin(2A) sin(61) (e e ) Sin(6x) ( € )
Sin(u) Siﬂ(ﬁx il u) (1.2 (2,1}
e — (p'% 4 b 4.31
sin(23) sin(6%) ( DAY ) (431
—{1) —(2)

with A = A {cf equation (3.21)). Here, the crossing symmetry is manifestly built
in again, with crossing parameter GA.

In contrast to the previous crossing-symmetric example (4.18), the local face operator is
still commuting at one site, i.e., [X;(u), X;(v)] = 0. This stems from the fact that the model
is labelled by two copies of the same graph and hence the twists '’ and @@ coincide,
guaranteeing the commutativity of the ‘full’ braid and monoid. Still, one cannot express
the local face operator X ;(u) entirely in terms of the ‘full’ braids and monoids. One again
has to introduce (at least) one additional operator, which in the present case can be chosen
as

Fy=b1" 4 b0 (4.32)
for instance. For the local face operator, one cbtains
sin(6A — u) I+ sin{u) E. sin(3u) sin(1(6A — u))
sin(6%) sin(6%) sin(2x) sin(61)
cos (&) ( -1 -1 (6T/2~ (6572~} g1
x Y B+B.)+(el(ﬁf Wp . 4 ¢ g )
[cos (23) g / ] J
+ 1 _{4_ sin(lﬁx—_- u s:in(:ﬂ F
2 cos(2) sin{6x) sin{64)

which shows striking similarity to equation {4.24). The ‘full’ braids and monoids are given

Xj(u) =

{4.33)
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by
Br=—y® fim LY _Spres gy 6T = S (434
J u—+Fivo Q(u) “F J 7 J .
in this case, where
sin(2A — u) sin(6A — u
o(u) = ) sin(6A — u) (4,35)

sin(2h) sin{6A)
is the function that enters in the inversion relation (4.7). The following relations hold:
(Bj—INB;+ DB+ y 2 INB; —y*I) =
(E))? = =20y* + y™E; = —dcos (4R)E;
B/E;=E;B;=3yE; (4.36)
Fi(Fi+IyF;—1)=0
(B, F;1=[E;, F;]=0.
Obviously, this very much resembles a representation of the one-colour braid-monoid

algebra where the braid satisfies a fourth-order polynomial equation. However, the monoid
E ; as weli as the additional operator F; cannot be written as a polynomial in the braid B;,

4.4. Vertex models of rype (6-V,6-V)

We are going to mention two models which fall into this category: the Agn and C‘zl’ vertex
models [19,20]. These are of course equivalent to the unrestricted case of the two series of
RSOS models defined above.

This implies that the Yang—Baxter operators of the A“) and Cf,_“ vertex models are given
by the same expressions as those of the related face models, i.e. by equation (4.30} for the
A‘ vertex model and by equation (4.31) for the C;” case. The only difference is that
the representation of the two-colour braid-monoid algebra is now of vertex-type (6-V,6-V)
with A = A% = A and X = (A £ m)/4 or A = (L £ 3m)/4. It is given explicitly by
equations (3.11)(3.17) above.

Of course, the results for the ‘fuil’ braids and monoids for the RSOS models related to
C‘zn {see equations (4.31)-(4.36)) also carry over to the vertex model. This may surprise
many readers since the Yang-Baxter algebra of the C;” vertex model is usually known
to be a Birman—-Wenzl-Murakami (BWM) algebra [6,7], and hence a one-colour braid—
monoid algebra where the braids satisfy a thlrd-order polynomlal equation. However, the
vertex model we consider here differs from the C2 vertex model of Jimbo [20] by a
spectral-parameter-dependent gauge transformation (4.11) which affects the braid limit and
therefore influences the algebraic relations. This is well known, see e, g equation (6.12)
of [8] where such a gauge transformation is used in order to obtain an ‘interesting’ braid
group representation from the six-vertex model. The same happens in the case of the A‘ '
vertex model which will be discussed subsequently.

4.5, Mixed vertex—-RSOS models

Here, we again have two examples which are linked to the RSOS models considered above,
namely the AS" and A vertex models [19,20] which are related to representations of
type (6-V, Az) As above these models are equlvalent to the unrestricted case of the two
corresponding series of RSOS models defined i m (4 17) and (4.18). Hence the expressions
for the Yang—Baxter operator of the A‘ » and A vertex models again coincide with those
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of the related face models which are given in equation (4.17) for the A(zn models and in
equation (4.18) for the Ag‘” models, respectively. The corresponding representation of the
two-colour braid-monoid algebra is now the mixed representation which we called (6-V,
A,) (see equatlons (3.34)(3.37) above).

For the f-’&2 vertex model, also known as the Izergin-Korepin model [34, 35], the same
comment applies as for the C( ’ vertex model before. Again, the vertex model obtained

as the unrestricted case of the dilute A-D-E models differs from the A vertex modet of
[34,19,20,35] by a spectral-parameter-dependent gauge (4.11). Of course, we ask if one
can get a one-site commuting Yang—Baxter algebra for the dilute A-D-E models by an
appropriate spectral-parameter—dependent gauge transformation (4.10). It turns out that this
is at least possible for the dilute A,_ models where the gauge transformation of the vertex
model carries over directly. For the other cases, notably for the most interesting case of the
dilute A; models, we did not succeed in finding such a transformation (although we also
tried to use the additional gauge freedom that one gains by the doubling of the states as we
did in order to interpret the dilute models as two-colour models) and it is our opinion that
at least a local gauge of the form (4.10) does not exist.

The recent results of Warmnaar and Nienhuis [9] suggest that there are in fact several
infinite series of mixed vertex-RSOS models. These include models with an arbitrary
number of colours, but all of them (except one or two) occur in the vertex-type
representation. As an explicit example, they consider the A3 loop—vertex model which
in our fanguage would correspond to a mixed vertex-RSOS model of type (6-V, G) which
is not however crossing symmetric. In [9], these models are obtained by a partial mapping
of well known vertex models [19,20] to loop models. The loop degrees of freedom in turn
can be rewritten as an RSOS model (in the sense that their partition functions en an infinite
lattice coincide; for more details see [9]). The vertex models investigated in {9] in this
context are the AY?, A, and C\ vertex models [19, 20]).

4.6. Baxterization

So far, we have presented several examples of critical exactly solvable models whose local
Yang--Baxter operators can be written in terms of two-colour braid-monoid operators in
certain matrix representations. Now, we address the question to what extent the algebraic
structure is responsible for the solvability of the model, i.e., in particular for the inversion
relation and the Yang-Baxter equation. Let us formulate the result as a theorem.

Theorem . Let P“’" b*—' @A and e‘f‘ﬁ ' (@ = 1,2) denote a representation of the two-colour
braid—-moneid algebra and p(" A P}“’ Pf,-m. Then the following statements hold.

(i) If VOV = 2cos(d), f'¥(z) = f2I() = z — 1, and if X ;(u) is given by
equation (4.17), then X ;(x) generates a Yang—Baxter algebra (4.6) and the inversion relation
(4.7) holds with o{u) = sin(A — u)/ sin(A).

(i) If QU = /0@ =2cos(A), fU2(2) = fOU(z) =z — |, and if X ;(u) is given
by equation (4.30), then X ;(u) generates 2 Yang-Baxter algebra (4.6) and the inversion
relation (4.7) holds with g{u) = sm(;\ — u) sm(l,)

(i) If VO = —2cos(4h), VOI = 1, fUP@G) = fONG) = z -1,
FPD) = z4+ 1, g¥8() = —z, and if X ;(u) is given by eq. (4.18), then X ;(u)

generates a Yang-Baxter algebra (4.6) and the inversion relation (4.7) holds with g(x) =
sin(2A — u) sin(3X — u)/ sin(2) sin(3%).

(iv) If /OB = /Q@ = —2cos(dh), fM(z) = f@D(2) = z — 1, and if X ()
is given by equation {4.31), then X ;(#) generates a Yang-Baxter algebra (4.6) and the
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inversion relation {4.7) hotds with p(#) = sin(2X — ) sin(6x ~ )/ sin(2x) sin(61).

The proofs consist of lengthy but straightforward direct calculations. Note that the
values of »'® and the functions f'(z) do not always enter since we eliminated all braids
bt ‘f‘“) in the expressions for the Yang-Baxter operator X;{«). Nevertheless, they are fixed
indirectly, since performing a braid limit on these expressions determines the braids in terms
of the other operators (up to normalization).

5. Conclusions

‘We defined a multi-colour braid-moncid algebra as a straightforward generalization of the
one-colour case. The diagrammatic interpretation also generalizes from the one-colour case.
This means that there is a direct relation to the theory of coloured knots and links. The
notion of crossing symmetry was discussed using the pictorial representation of the algebra,
Different peneral classes of representations which are connected to solvable lattice models
were given explicitiy. The two-colour algebra turned out to describe the Yang-Baxter
aigebra of recently constructed solvable models which are related to dilute one-colour loop
models [10,11,9] and to dense two-colour loop models [9]. For several examples (which
were taken from [9]), we expressed the Yang-Baxter operator of the models in terms of
generators of the two-colour braid-—monoid algebra and our main resuit is that we could
actually prove that the solvability of the model follows from the algebraic structure alone.
These include the so called dilute A~D-E models [10, 1] which are of particular interest
since the dilute A, models with L odd allow an integrable off-critical extension that breaks
the symmetry of the Dynkin diagram A,. Hence, the physical meaning of the elliptic
nome is that of 2 magnetic field. This has, for instance, the consequence that, although the
two-dimensional Ising model in a magnetic field has not been solved, the dilute A3 model
provides us with an exactly solvable model which belongs to the same universality class.

The dilute A-D-E models possess another interesting property. Their Yang—Baxter
algebra, which is the algebra generated by the local face operators, is non-commuting at
one site. For these models, a description using only ‘full’ braids and monoids (which are
obtained essentially by summing up the coloured objects) tumed out to be complicated. It
involved at least one new object and we doubt that there is a nice diagrammatic interpretation
for the relations satisfied by these operators. Our description of the dilute modeis as two-
colour models is certainly more natural. For the rest of our examples, similar observations
apply.

As one notices, there is an apparent similarity in the expressions for the Yang-Baxtet
operators of the RSOS models labelled by (G, A;) (equations (4.17)~(4.18)) and of those
labelled by (G, G) (equations (4.30)4.31)). This suggests that it might be possible to
Baxterize [12] any representation of the two-colour braid-monoid algebra with the same
properties as the representation labelled by any pair (G0, 2 of graphs.

Conjecture . Let p‘f‘ﬂ ' bt (f'ﬁ ), and e‘J'-”B ' (@, B = 1,2) be a representation of the two-colour
braid—-monoid algebra with

VOB = ~ (kN - k(a))'z
@' = -—(k“”)-3
f"’”(z) =(z — w(a))(z - k(ar)) (5_1)

feP@y=z-1 (@ # B)
g(tx} (z) = k(a) (Z _ kia))
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where k"' and £ are arbitrary complex numbers (of modulus one). Then this representation
can be Baxterized to a (critical) solvable model whose Yang-Baxter operator is of the formt

Xjw) = AWP" + A@PTY + AP + fiwp]”

+fse " + e + frael? + fatuyeth (5.2)

+ b + Fo@b?? + @b + fi2()p®"

where the coefficient functions fi(u) are products of trigonometric functions of the spectral
parameter u involving (in general) both A‘Y and A%,

Even more, one might conjecture that this extends to the m-colour case although we
are not aware of any known restricted model which is related to the m-colour algebra with
m > 2. Work to check these conjectures is currently in progress.

If these conjectures tum out to be correct, this would provide us with a method to obtain
new solvable critical models. In some sense this procedure resembles the fusion (both have
a diagrammatic interpretation acting on composite strings, cf e.g. [8]) of solvable models
but, as the above examples show clearly, it in fact leads to totally different models.

Furthermore, all examples we presented in this paper in fact correspond to two-colour
generalizations of the Temperley-Lieb algebra only. In particular, this means that the
coloured braids fulfil quadratic equations. One would certainly expect that one can find
representations of the multi-colour algebra and solvable models related to them which, for
instance, generalize the BWM algebra (where the braids fulfil a cubic equation). Hence our
results open up a variety of interesting directions for further investigations.
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