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Multi-colour braid-monoid algebras 

Uwe Grimm and Paul A Pearce 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052. Australia 

Received 16 March 1993, in final form 10 August 1993 

Ahstract We define multicolour generalizations of braid-monoid algebras and present explicit 
maIrix representations which are related to twwdimensional enaclly solvable lanice models of 
statistical mechanics. In particular. we show lhat the twc-colour braid-monoid algebra describes 
the Yang-Baxm algebra of the critical dilute AD-E models which were recently introduced 
by Wamaar, Nienhuis and S e w n  as well as by Roche. These and other solvable models related 
to dense and dilute loop models are discussed in detail and it is shown lhat the solvability 
is a direct consequence of the algebraic smcture. It is conjectured that the Baxterization of 
general muiticolour bmid-monoid algebras will lead to the wnsmction of further solvable 
lattice models. 

1. Introduction 

The study of Yang-Baxter equations [I] has revealed a rich underlying algebraic structure in 
integrable systems with applications ranging from statistical mechanics to knot theory. Most 
well known among these algebraic structures is the quantum group. However, Yang-Baxter 
algebras are intimately connected to a number of other algebraic structures, most notably 
the braid group [2] and the Temperley-Lieb [3] and Hecke algebras [4]. The braid and 
Temperley-Lieb or monoid [5] operators were first combined into a single algebra in 1987 
by Birman and Wend [6] and independently by Murakami [7]. Subsequently, generalized 
braid-monoid algebras were introduced by Wadati eta1 [8]. On the one hand, these algebras 
are related to certain two-dimensional exactly solvable lattice models. On the other hand, 
the braid-monoid algebras admit a simple diagrammatic interpretation which points to the 
connections with the isotopy of knots and links. In this paper, we consider a generalization 
of the braidmonoid algebras where each strand or string of a link is assigned a colour. 
Some representations of these extended algebras correspond to the Yang-Baxter algebras 
of new critical solvable lattice models recently obtained by the Amsterdam group [91. In 
particular, the two-colour algebra is related to the dilute A-D-E models [lo, 111. 

The paper is organized as follows. We begin by defining the multi-colour braid-monoid 
algebra in section 2. A graphical interpretation is presented and a generalized notion of 
crossing symmetry is introduced. In section 3. we consider matrix representations of the 
multi-colour algebra and give explicit expressions for different types of representations. 
Section 4 concentrates on the two-colour case and the relation to exactly solvable models. 
The Yang-Baxter algebra of several RSOS models, vertex models, and mixed vertex- 
RSOS models is shown to be described by the two-colour algebra. Our main point, 
however, is that the algebraic structure is actually sufficient to guarantee that the Yang- 
Baxter equations are satisfied and hence yields the solvability of the models. We conclude 
by summarizing our results and give an outlook on possible consequences and further 
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investigations. In particular, we conjecture that the general multi-colour braid-monoid 
algebra can be. Baxterized [12] to obtain new exactly solvable lanice models. Before 
proceeding, we point out that coloured braids and links have been considered previously 
by Akutsu, Deguchi and Wadati [13-17]. However, the developments of these papers are 
unrelated to the present paper. 

U Grimm and P A Pearce 

2. Definition of the multi-colour algebra 

The (n + l)-shing m-colour braid-monoid algebra is the associative algebra generated by 
the unit element I (i.e., Ix = XI = x for all elements x of the algebra), central elements 
JQ'" and w(=) (1 S_ (Y < m) together with three sets of generators 

(i) m(n + 1) *projectors' PY' (1 < j < n + 1.1 < a  < m) 
(ii) m2n 'coloured Temperley-Lieb operators' e?@) 
(iii) m2n 'coloured braids' b+?') = byB' and 'coloured inverse braids' b-7') 

which fulfil the following list of relations: 

(2.3) 

(2.4) 
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(vi) compatibility relations between projectors and braids: 

The algebra defined above allows a graphical presentation acting on n + 1 strings which 
themselves can be thought of as composite objects consisting of m 'coloured' strings each. 
In the pictures below, we are going to represent the 'full' ('uncoloured') string by a bold 
(thick) line whereas strings with a colour are represented by a thin line canying the colour 
index. Our pictorial view of the generators looks as follows. The projectors Py'  are 
represented by 

1 2 j - 1  j j + l  j + 2  n 

or more simply by 

1 2 j - 1  j j + l  j + 2  n 

since we can always multiply with the identity 

n + l  

(2.10) 

1 2 j - 1  j j + l  n n + i  

The coloured braids, inverse braids, and monoids correspond to the diagrams 

j - 1  j j + l  j + z  n n + l  1 2 

1 2 j - 1  j j + l  j + 2  n n + l  
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1 2 j - 1  j j + l  j + 2  n n + l  

Multiplication corresponds to concatenation of pictures where we use the convention 
that the product A .  B corresponds to glueing the picture for A above the one for B (hence 
if one thinks of the generators as operators acting on states (to the right) then the 'time- 
direction' points upwards). Any picture with an incompatible matching of colours is zero. 
Diagrams which can be transformed into each other by continuous deformations of shings 
(without affecting the colours of strings, of course) are equivalent All the defining relations 
of the multi-colour braid-monoid algebra can be visualized in this way. To illustrate this, we 
present pictorial versions of the main defining relations as examples. The projector relations 
(2.1) and the compatibility relations (2.6) and (2.7) follow from the requirement of matching 
colours alone. Also, the commutativity of operators acting on different strings is represented 
in the diagrams in an obvious way. For the remaining relations, the corresponding pictures 
are given in the sequel. The braid relations (2.2) give rise to the following diagrams 

j j + l  j j + l  j j + l  

Y 

(2.15) 

where here and in what follows we only show the relevant part. 
Temperley-Lieb relations (2.3) are 

The multi-colour 

(2.16) 

j j + l  
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which means that a closed loop of colour CY in a diagram can be replaced by the diagram 
without the loop multiplied by a factor and 

j j + l  j + 2  

j j + l  j + 2  

together with its mirror image. The ‘twist’ relations (2.4) have the following pictorial 
interpretation: 

j j + l  j j + l  
i.e., undoing a ‘twist’ in a string of colour CY produces a factor o@). Finally, the braid- 
monoid relations (2.5) look as follows: 

P 

Y la: Y 

Y H 0 j j + l  j t Z  

(2.19) 

j j + l  it2 j i + l  if2 

the second relation in (2.5) being again just the mirror image of the above. 
This completes the list of defining relations. The pictorial presentation is useful since it 

allows to simplify products of operators in a fast and easy way. More importantly, however, 
it shows that there is a close connection to the theory of coloured knots and links and it 
should be possible to derive invariants for the coloured objects in the same way one obtains 
invariants for knots and links from the usual braid-monoid algebra (see e.g. [SI and [IS]). 

2.2. Generalized crossing symmetry 

Before we commence to investigate representations of the multi-colour algebra, let us 
introduce a generalization of the so called crossing symmetry which is actually a built-in 
feature of the algebra. The notion of crossing symmetry originates in scattering theory and 
was introduced in the context of statistical mechanics models via the close relation of exactly 
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solvable two-dimensional statistical models and completely integrable quantum systems in 
one dimension (where the Yang-Baxter equations guarantee the factorization of S-matrices. 
see e.g. [8]), (cf the discussion of crossing symmetry in solvable models in section 4.1 
below). We do not attempt to formulate crossing in full generality but we rather present 
some simple examples which clarify our notion of crossing. Since the colours of strings 
are not altered by crossing we neglect all the colour indices of the strings for the moment. 
However. one should bear in mind that each string is meant to have a definite colour in 
the pictures below (or that one anyhow looks at the one-colour case). This restriction is 
necessary here since we do not have an interpretation for crossing of the projectors. 

To explain what we mean by generalied crossing, we use the graphical interpretation 
of the algebra. Essentially, if one has any (sub-) diagram (symbolized by a rectangular box 
in the figure below) with e in- and out-going (coloured) strings, applying one generalid 
crossing step ('crossing generator') means that one changes the interpretation of two strings 
as follows: 

U Grimm and P A Pearce 

1' 2' (e - I)' c 1 1' 

1 2 e - 1  e 2 3 e er 
(2.20) 

i.e., one in-string is converted into an out-string and vice versa. Note that the relative 
order of the strings is maintained. The diagrams that one obtains in this way can again be 
interpreted as representing products of generators in OUT algebra (no projectors), although 
one might have to add additional strings as shown in the example below: 

1 0 0' I' 

1' 2' 1 

U 

1 2 2 2' n 

(2.21) 

2 3 3' 2' 

The labels (0.0') and (3,3') for the additional lines an motivated by the fact that the 
last diagram can also be obtained by two generalized crossing steps starting from the same 
diagram as in equation (2.21) but with two additional vertical lines 0-0' and 3-3' adjoined 
to the left and to the right, respectively. 

As already mentioned above, we cannot give a natural interpretation of crossing for 
the projectors since they only act in one direction. Nevertheless, we certainly can 'cross' 
straight l ies that have a definite colour from the beginning (i.e., one thinks of the operators 
acting on coloured strings already which means that the projectors just act as the identity) 
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8 

6 

to obtain coloured monoids as follows: 

Y 

Y 

and for the coloured braids one has 

(2.23) 

Of course, one always comes back to the operator one started with after (at most) four 
generalized crossing steps (for e = 2, in general one needs 2e steps). 

Crossing symmetry now means that if one has a relation in the algebra and performs 
a generalized crossing transformation on both sides of the equation, one obtains-possibly 
after adding strings in order to be able to interpret the resulting diagrams as representing 
products of generators of the algebra-another valid equation in the algebra. Of course, 
adding strings has to be done the same way on both sides of the equation. 

To conclude our excursion with an instructive example, we show how one of the braid- 
monoid relations of equations (2.5) and (2.19) is crossing-related to the simple fact that a 
braid multiplied with its inverse yields the identity. In the coloured case, it looks as follows 

B 

B 
i j + l  j + 2  

J. 

j j + l  j + 2  

j j + l  j + 2  

J. 
Y 6uB 

Y me 
i j + l  j + 2  

(2.24) 

This also means that one could significantly reduce the number of defining relations of the 
multi-colour algebra by imposing crossing symmetry. We chose not to do so since it is not 
easy to implement crossing algebraically. That also explains why we used the diagrammatic 
interpretation of the algebra in the above discussion. 
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3. Representations 

In the context of exactly solvable models, we are interested in representations of the multi- 
colour braidmonoid algebra where the central elements @ and &) (1 4 CY < m) are 
represented by numbers and where the following equations hold 

(3.1) 

U Grimm and P A Pearce 

(el b'Cz.U' ( U 4  - 0 

j ) P I  

g ( j '  ) P j  I 

CU.8) = pcu) LR) 

f ( j ) P j '  - 

(3.2) f cUd)(b'P,m)b'u.#) = 0 

(3.3) ( O r )  b'" 01' (%e) = e(QP) 

where f ' " ' ( z ) ,  f ' " ~ ~ ) ( z ) ,  and gcs)(z) ( I  < ci,p < m) are polynomials in z and where we 
introduced 'two-site projectors' pyp' by 

(3.4) 
as a convenient abbreviationt. We regard the above relations (3.1H3.3) as properties of 
the representations rather than defining relations of the algebra since the actual numbers and 
polynomials are model-dependent quantities. 

The following remarks are in order. 
(i) For the one-colour case (m = 1) the algebra defined above reduces to the well known 

(ii) From any representation e of the one-colour algebra which acts in an (n + I)-fold 

P j  J pk!'I 

braid-monoid algebra (see e.g. [SI). 

tensor product space 
n t 1  n t l  

k=I k=1 
e : @ V w + @ V k  (3.5) 

one can obtain representations e("' of the m-colour case as follows. As representation space 
at site j choose the m-fold direct sum V j  = V~1)fBV~)fB.  . .$Vy' of the corresponding space 
of the one-colour representation Vy' 2 Y j  and represent the operators P:?) (1 < a < m) 
by the orthogonal projectors onto the m subspaces Vy' at site j .  From the compatibility 
relations (2.6) and (2.7). it follows immediately that b*yp)  and e?" can act non-trivially 
between certain subspaces only. Defining 

. . ~  

where the products over k run from I to n + 1 and 

one obtains a representation of the m-colour braid-monoid algebra with @ = a, 
U(') = o, f ( " ) ( z )  = f(z). f ' "*f l ) (z)  = f(z) f(-z), and g'')(z) = g ( r )  for all a.p = 
I ,  . . . , m. Here, the quantities without colour indices ci or ,3 refer to the one-colour case. 
In particular, this shows that there exist representations of the m-colour algebra for any m. 

t Of c o w ,  it i s  possible to use p?') instead PF' to define the algebra f" the very beginning. We chwse to 
do otherwise since in our view, the P y  are the mare basic objects, 
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(iii) Conversely. starting from a representation of the m-colour algebra (m > l), one can 
recover part of the one-colour relations for the 'full' or 'uncoloured' Temperley-Lieb and 
braid operators obtained by summing over all colours. To be more precise, the operators 
Bf defined by 

with ~ ' ~ ~ 6 )  E C \ [OJ fulfil the braid algebra relations (2.2) and the operators E ,  detined by 

(3.10) 

(c'@l E C \ (01) generate the Temperley-Lieb algebra (2.3) with = E:=, @. 
However, the relations (2.4) and (2.5) between these two types of operators are in general not 
satisfied by Bf and E j as they are defined in equations (3.9) and (3.10) above. In particular, 
the algebra generated by the 'full' braids and monoids in gened becomes non-Abelian at 
one site j .  The relations (2.5) hold if and only if (de,@))* = 1 for all a, fl  = 1, . . . , m. 
Equation (2.4) is fulfiled with twist o if and only if c"~%@) = w for all (Y = 1, . . . , m. 
Hence the full set of relations can only be recovered if all the twists dU) coincide up to a 
sign. It should be added that whereas one again has polynomial equations in the 'full' braidt 
B j  (3.1) one obviously cannot write the 'full' Temperley-Lieb operator E j  as a polynomial 
in the braid B J  (3.3) (unless all e?') with a # f i  are represented by zero matrices). 

In what follows. we construct three classes of representations for the m-colour braid- 
monoid algebra. These representations are related to exactly solvable lattice models of 
statistical mechanics as we are going to show in section 4. 

3.1. Vertex-type representations 

Representations of the (one-colour) braid-monoid algebra which are Linked to vertex models 
(see e.g. [8]) are of the type (3.5). i.e., they act in a tensor product space. Therefore, 
equations (3.6) and (3.7) give m-colour generalizations of this kind of representations. 

Here, we construct a different multi-colour generalization of the representation of the 
one-colour algebra related to the six-vertex model (see e. 181) which is the simplest (non- 
trivial) vertex model related to the &ne Lie algebra A, [19,20]. The representation of 
the m-colour braid-monoid algebra acts in the space (Vm)R)Mnt'l with V 2 C2 according 
to the two possible states (arrows) of the six-vertex model. The operators Pp, b * y 8 ) ,  
and e?" act as the identity in all but the space (P), (for P:!') respective ( I . " ) k  with 
k = j ?  j + 1 (forb 

fii 

-t la.PJ ( a m  , and e , '  ), i.e., 

(3.11) 

(3.12) 

(3.13) 

t This follows from the fact that there an only finitely many independent products of coloured braids which enter 
in the expressions for lhe powers of the 'NI' braid B i .  
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Here, 
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: V" 4 Vm acts as a projector onto colour a 

(3.14) 

whereas b* "") and ecOiB) both map Vm @ V" -+ Vm@V". As above (see equations (3.6) 
and (3.7)). the compatibility relations (2.6) and (2.7) imply that b*'a'B) and can have 
non-zero matrix elements in certain subspaces only. In these subspaces, they are given by 
4 x 4 matrices with elements 

&I-(s+s')/Z 
) - (k"')*' (6s,I.6,.,I - (P)) &.-I&,,-,,) (3.15) Iv"~@v~.~-LH.~@vv"~ - (b" l%a) 

(b* ' a 1  = WS,I for a # B (3.16) 

~ ~ ~ ' ~ ~ ~ ~ v ~ ~ ~ ~ v l ~ ~ ~ v v ~ @ v l ~ ~ ~ ' ~ , l ) ~ ' ~ , I ~ )  = ( ~ ( u ) ) - s ( ~ ( ~ ) - ~ ' ~ ~ , - 1 6 ~ , , - I ,  (3.17) 

where s, t ,  s', t' = +1. Here, x") = exp(iA(=)) and k(') = -iexp(--iA("'/Z) = l / ( i m ) ,  
and A'=) are arbitrary (real or complex) numbers which one can choose independently for 
any colour a. 

I V I . l @ ~ n m - V v , @ v ~ = l ) ~ * , I ) , ~ , I ~  

The above representation (which we denote by (6-V,6-V,. . . ,6-V)) is characterized by 
Jii7" = 2cos(A'"') = x("' + l/d" 

(3.18) 

Note that even in the case of m identical values of A(") = A this representation is in general 
different f" the representation given in equations (3.6) and (3.7). This is obvious since 
f ' "@(z)  z - 1 here whereas f'".e'(z) = (zz - &(r2 - kz)  in the other case. 

3.2. Representations labelled by graphs 

Consider m (connected) graphs E'"), 1 < a < m, with L"' nodes (enumerated by 
al') = 1, . . . , L")) where any pair of nodes is connected by at most one line (bond). 
Connectivity is not really a restriction here, in fact one can always think of the connected 
components of one graph as separate graphs. Note that we do not have to assume that 
the graphs are simple, i.e. that each line connects two distinct nodes. In what follows, we 
denote by N'") = (1.. . . , L'")] the set of all nodes of E("). 

To each graph G'a' we associate an adjacency matrix A'"). This L'" x L") mahix has 
elements 

where a"', b'"' G (1,. . . , L(')) are adjacent if the nodes a(") and b(') in GIa1 are connected 
by a bond. In other words, the adjacency matrices considered here are characterized by 
being symmetric matrices with all entries 0 or 1 and by vanishing elemenui on the diagonal 
in the case that the corresponding graphs are simple. We denote by 

AIe1 2 COS(A(~') = XI=' + 1/x"' (3.20) 
(3.21) = - Z c O s ( 4 ~ ' )  = - ((y@)f + (y (U) ) -4 ) 
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the Perron-Frobenius eigenvalue of A'") and by Sy' (1 < j < Llu))  the elements of the 
corresponding eigenvector, i.e., 

'") 

CAES?' = A(')S!') I .  (3.22) 
i=I 

The two different parametrizations in equations (3.20) and (3.21) will prove useful below. 
Note that whereas for fixed A'u' there is only one value for A'"' (modulo 2n and up to 
a sign which is irrelevant here) there are in general four different values for k"', namely 
k"' = (A(a)  3~ a ) /4  and k") = (A(=) f 3rr)/4. 

Consider the Cartesian product g = G(I1 x S'*) x . . . x gem) of the m graphs. It has 
L = nc=l L'O' nodes labelled by N = N(I) X N ( ~ )  x . . .xN('") and hence the corresponding 
adjacency matrix A is an L x L matrix given by 

where A'") is the L x L matrix with elements 

and we use m-tupels a = (ail1, a'Z', ..., a")) E N to enumerate the nodes of B (which we 
also call 'states' or 'heights' in reminiscence of the role they play in the solvable models). 

The basis N. of our representation space for the (n + 1)-string m-colour braid-monoid 
algebra is now given by all allowed (n+ 1)-step paths in the graph B, that is by the following 
set 

" t l  I j=l 
N n =  a = ( a o , a ~  ,... , a n , a n t i ) [ a j ~ N a n d  n A .  ,-,, a , = l  1 (3.25) 

which forms a subset of the (n +2)-fold Cartesian product of the set N. Then the following 
equations define a matrix representation of the m-colour algebra on the space spanned by 
N,: 

(3.26) 

(3.27) 

where a = (ao,a,, . . . , a,+[), 6 = (bo, b , ,  . . . , bn+I), and where 

(3.29) 

(3.30) 

fixes the scale of the braids by' such that equations (2.5) are satisfied?. 

t Note that equations (2.5) fix the scale of the braids up io a sign. 

These 



7446 

representations are characterized by (cf equations (3.1H3.3)) 
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Jii"; = A'') 
= - ( k ( U ) ) - 3  

f'"'(z) = (Z - w''))(z - k")) (3.31) 
f '"@)(z )  = z - 1 (a # f l )  
~'" '(z) = k'*)(z - k")) . 

For the one-colour case, the representation defined through equations (3.26H3.30) 
reduces to the representation related to the Temperley-Lieb interaction models [3,21.22]. 
These are critical IRF models [23] if the underlying graph is a Dynkin diagram of a simply 
laced Lie algebra or of the corresponding affine algebra [22]. They include, for example, 
the critical A-DE lattice models of Pasquier [24,25,26] (which in turn include the ABF or 
RSOS (resuicted solid-on-solid) models [27]) and the CSOS (cyclic solid-on-solid) models 
128-301. For this reason, the present class of representations will frequently be referred to 
as the 'RSOS representation' below. 

The apparent agreement between the polynomial relations satisfied by the vertex-type 
representation (3.18) and the resent case (3.31) is not coincidental. If one considers the 
representation labelled by (A;,!, , . .,A!;,) and performs the limits L") 4 03 with 
,Ifu) = K S ~ ~ ) / L ( ~ )  (0 c sm) < L@), dU) and L'=) coprime) fixedi, one obtains an infinite- 
dimensional representation of the m-colour algebra which nevertheless is related to the vertex 
representation (3.11H3.17) of the (n + l)-sming m-colour braid-monoid algebra with the 
corresponding values of In the limit, the dependence on the actual heights vanishes--all 
that matters are differences of heights. Since for any colour there are only two possibilities 
(height either increasing or decreasing by one), one can go over to a description with only 
two states which is the corresponding vertex-type representation. This is nothing but the 
usual SOS (solid-on-solid)-verx model correspondence [31] (sometimes also referred to 
as the Wu-Kadanoff-Wegner transformation, see [32,33]) which will also be reflected in 
our examples of solvable models below. 

3.3. Mixed representations 

As 'mixed' representations (6-V.6-V,. . . ,6-V,9"),9(2),. . . , 9@")) we denote representations 
of the m-colour braid-monoid algebra in which m y  colours appear in the vertex-type 
representation and the other mR = m - mv in the RSOS representation labelled by the 
mR graphs g"), gcz), . . . , @'e'. For simplicity, we assume that among these all graphs an 
simple. 

Due to the mixture of degrees of freedom on vertices and on edges it is more 
cumbersome to describe the representation space in the mixed case. We use the notation of 
section 3.2 for the colours labelled by the mR simple graphs. For the vertex part, we use 
the set 

P A"' 

which gives all possible vertex states on any edge of the lattice. Here, 0 stands for no anow 
and *I for an arrow that points upwards (downwards) or to the right (left), respectively. 
The second condition guarantees that there is at most one coloured anow on any edge. 

t Note that in order to do this one has to use other eigenvalues and eigenvectors of the adjacency mauices apa~I 
f" the Pemon-Froknius one. Of course, one can use any eigenvalue and eigenvector, the only benefit of using 
the Perron-Fmknius vector king that it has real positive entries only. 
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means that for these models the elliptic nome acts as a magnetic field rather than being a 
temperature-like variable as it is in the usual case. As a result. the dilute models related to 
the Izergin-Korepin 134,351 (or [19,20]) vertex model include, for instance, a model 
which belongs to the same universality class as the king model in a magnetic field [lo 
We are going to have a closer look at RSOS models which are related to 4’). AY’, A$ 
and Cy’ vertex models [19,20,9]. 

The representations of interest for our present purpose are representations of the two- 
colour algebra where either both graphs @ and @) coincide or where one of these (which 
without loss of generality we assume to be @) is just the Dynkin diagram of the Lie algebra 
A2. As it turns out, the first case corresponds to RSOS models related to dense two-colour 
loop models [9] whereas the second case corresponds to dilute models [lO,9]. To obtain 
critical models whose Boltzmann weights are parametrized by trigonometric functions, the 
graphs have to be Dynkin diagrams of ‘classical’ A-D-E type or of their affine counterparts 
A(II-D(I)-E(I), 

The 
Perron-Fmbenius eigenvector is just given by Sf’ = Si” = 1. Furthermore, one has 
A‘z’ = 1 and hence .d2) = exp(fni/3). This yields i@ = exp(bi/3) (respectively 
i m  = exp(xi/3)) and it follows that 

(4.1 ) 

or, in other words, ,/@ = 1, d2) = TI,  f“ ( r )  = z z!z 1, and g(”(z)  = yz. In order to 
comply with the usual notation (which is = z / ( L  + 1) for @’) = AL) we choose the 
first (upper) sign, i.e. in particular d2) = -1. Actually, since the sign of the braids is not 
k e d  by equation (2.5) this is nothing but a convention. 

In addition, we discuss several examples of two-colour vertex models and two-colour 
mixed vertex-RSOS models. These models are related to the unrestricted SOS models of 
the RSOS models mentioned above. That means in particular that the algebraic description 
of the vertex (respectively, vertex-RSOS model) is the same as for the corresponding RSOS 
model, the only difference being that one deals with two different representations of the 
twosolour braid-monoid algebra 

Our algebraic approach shows clearly that the several models listed above, albeit looking 
quite different from each other, are in fact closely related and hence provide a uniform 
characterization of this type of model. On the other hand, we are able to show that the 
Yan-Baxter equations for these models follow from the algebraic smcture alone (see 
section 4.6). This means that for any representation of the two-colour algebra with the 
corresponding properties one obtains a solution of the Yang-Baxter equations and hence an 
exactly solvable model. A more precise formulation as a theorem is presented at the end of 
this section. Finally, the common algebraic smcture strongly suggests a plausible ansatz to 
find new solvable models. We will come back to this point in our conclusions. 

U Grimm and P A Pearce 

For the case gc2) = Az, the above representation simplifies considerably. 

(2.2) - Fb‘2.2’ - 
e j  - j -w-, --PI (22 )  - (2.2) 

4.1. Local face operator and the Yang-Barter equation 

Let us (very briefly) recall the main properties of exactly solvable two-dimensional statistical 
systems on the square lattice. The models are defined by specifying the degrees of freedom 
(which usually live on the edges or on the vertices of the lattice) and their interactions. 

There are two frequently studied types of models which are the vertex models and the 
so called IRF (interaction-round-a-face) models. For vertex models. the degrees of freedom 
(‘arrows’ or ‘spins’) are located on the edges and the interaction takes place at the vertices 
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of the lattice. We denote the Boltzmann weight of a vertex as follows: 

W 

s I 

where here and in what follows the letter U is used for the spectral parameter. On the 
other hand, RF models have their degrees of freedom (usually called 'heights') situated on 
the vertices. Here, the interaction takes place between the four comers of an elementary 
plaquette of the lattice. The Boltzmann weights for such a plaquette have the form 

a 
Of course, one can also consider face models which are a combination of both. For 
simplicity, we will not give explicit expression for these models which can be. handled 
in a completely analogous way. 

We now introduce face transfer operators (also called Yang-Baxter operators) that act 
on the configuration along a row of the diagonal lattice. For IRF models, the face transfer 
operator X j(u) has matrix elements (36,371 

(4.4) 

where a = (UO, al. a2.. . .,a., a,+t) and a' = (ab. U!.  4,. ..,a;,  denote allowed 
height configurations on adjacent rows and n is the size of of the diagonal lattice. Here, 
'allowed' means that we consider only those configurations which can be extended to a 
configuration on the whole lattice that has a non-zero Boltzmann weight. For vertex models, 
the face operators have the following matrix elements 138,391: 

Here, s = (SI, SZ.. . . , s., s,+I) and 8' = (si, s;, . . . , S A ,  s;+J denote arrow configurations 
along rows of the diagonal lattice. In fact, the Yang-Baxter operator of a vertex model can 
be written as a tensor product X j ( u )  = I @ I @ . . . @ X ( U )  @ . . . @ I where I denotes the 
identity matrix and the local operator X ( U )  covers the j and j + 1 slots. In both cases, the 
Yang-Baxter operators X j ( u )  are local operators in the sense that, except in the vicinity of 
site j ,  they act as the identity. 

If we assume that the Boltzmann weights (4.2) and (4.3) satisfy the Yang-Baxter 
equations, the corresponding local face operators X j @ )  (equations (4.4) and (4.5) 
respectively) generate the so called Yang-Baxter algebra [23,39,40]: 

(4.6) 

The first equation essentially is the Yang-Baxter equation while the second follows from 
the local action of the Yang-Baxter operators. The Yang-Baxter equations guarantee the 
solvability of the model since it follows that the row transfer manices of the model form a 
commuting one-parameter family which yields an infinite number of conserved quantities. 
Usually, one requires that the Boltzmann weights have additional properties besides fulfiling 
the Yang-Baxter equations. ' h o  of them, the standard initial condition (value of Boltzmann 

x j ( U ) x j + t ( U  + U ) x j ( U )  = X j + l ( ~ ) X j ( u f ~ ) X j + l ( ~ )  
x j ( U ) x k ( U ) = X , ( u ) X j ( u )  forij-kl  z 1. 
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weights at U = 0) and the inversion relation (unitarity condition), can be formulated directly 
in terms of the face transfer operators. They result in the relations 

X , ( O )  = I  (standard initial condition) 
Xj(u)Xj(-u)  = e(u)Q(-u)f (inversion relation) 

U G r i m  and P A Peurce 

(4.7) 

where e ( u )  is a model-dependent function of the spectral parameter. The inversion relation 
can actually be derived from the Yang-Baxter equation and the standard initial condition. 

Another important property of many exactly solvable models is the so called crossing 
symmetry. Since it cannot be simply described in terms of the local face operators, we go 
back to the Boltzmann weights. For EXF models, crossing symmetry means 

and for vertex models, one has 

(4.9) 

Here, A is the crossing parameter and * (a)  and r(s) are crossing multipliers [36,39,40] 
which are complex numbers and do not depend on the spectral parameter. For the vertex 
models, T = --s means the charge conjugated state of s and the crossing multipliers 
satisfy r O  = I / r (s ) .  The presence of crossing multipliers means that the Boltzmann 
weights are not invariant under rotations in general. However, the crossing multipliers 
of adjacent vertices (respectively, plaquettes) cancel each other and on a periodic lattice 
(which means periodic in both directions) they do not enter into the partition function at 
all. This is an example of the more general concept of gauge equivalence. Two models are 
gauge equivalent if their Boltzmann weights are related by a gauge transformation. In the 
present context, these are transformations of the Boltzmann weights which do not change 
the partition function of the model on a lattice which is periodic in both directions. A 
general local gauge transformation therefore has the form 

(4.10) 
F(d, c; U )  G(d, a; U) 
F(a ,  b; U) C(c, b; U )  

W (  d> [ U)- 
for IRF models and 

(4.11) 

for vertex models. In both cases, F and G can be arbitrary functions which are also allowed 
to depend on the spectral parameter U. Of course, quantities which are not determined by 
the partition function on the periodic lattice alone may depend on the particular gauge. For 
instance, the Yang-Baxter algebra of a solvable model can depend on the gauge. For an 
example, see the discussion of the @ vertex model below. 

4.2. RSOS models labelled by the pair (9,A-J 

The two examples of solvable RSOS models we want to consider here are related to the 
A:” and A?’ vertex models [19,20]. As these models are defined in [IO] and 191, they 
are labelled by one simple graph S (which is of A-D-E type for critical models) and in 
addition the height variable is allowed to stay at the same value for adjacent sites, i.e. the 
actual adjacency diagram d is obtained from G by affixing a circle at each node of 8. For 
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P = AL, for instance, 0 thus looks as follows: 

(4.12) 
1 2 3 4 L - 1  L 

In order to interpret this model as an RSOS model labelled by a pair (P,A*) of 
graphs, we double the number of heights. That is, instead a E P we have two heights 
(a ,  E )  E (9, Az) with E E { I ,  2) and hence we have two copies of the graph 8. The circles 
are now replaced by lines connecting the heights (a ,  1) and (a ,2)  in the two different 
copies. Thus what we get is the graph G x A2 which for our above example P = AL looks 
as follows: 

The graph P x A2 possesses a natural Zz symmetry ( (a ,  E) H (u,-F)) with Z = 3 - E  and 
by taking the quotient (g x A2)& Z 8, one recovers the graph G. This, of course, is a 
rather trivial example of the orbifold duality of Fendley and Ginsparg (411. 

There is an exact oneto-two correspondence between @allowed’ faces and ‘P x Az- 
allowed’ faces 

n (a, 6.) 

since choosing for instance co E (1,2), the values of Eb, cc and cd are determined by 

cb =G&.b+‘%(1 - 6 e , b )  

cc = G6b.c + 6 b ( l  - 6b.c) (4.15) 

where G = 3 - et. It is therefore obvious that for any ‘&allowed’ configuration on a 
square lattice there are exactly two ‘P x Az’-allowed configurations. Hence, choosing the 
face weights to be 

Ed = %,d + Ec(1 - 6c.d)  

(4.16) 

independent of the value of E,, with W ( :i 1 U) denoting the face weights of the dilute 
A-D-E models [lo], these two configurations have the same weight and one obtains a 
solvable model with adjacency graph 47 x A2 whose partition function is just twice the 
partition function of the corresponding dilute model with adjacency graph 8. 
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As our first example, we consider the dilute model which is related to the @) vertex 
model [9]. The local face operator (4.4) for this model can be written as follows: 

(4.17) 

where the braid and monoid operators are understood to be the matrices of the representation 
labelled by (G, A2) and A = A['). Obviously, the model is not crossing symmetric since 
py'2' and p y "  enter in Xj(u)  with a coefficient one whereas the corresponding 'crossed' 
objects eyv2) and e?" do not show up in the expression for Xj(u) at all. 

The second example is the dilute model related to the A?' vertex model (Izergin-Korepin 
model) [ 10.91. Its Yang-Baxter operator (4.4) has the form 

with 1 = 5;"'. As one recognizes from this expression for the local face operator Xj(u), 
the face weights are manifestly crossing symmetric. The crossing parameter of the model 
is 31. 

We choose this model as our main example since it is particularly interesting. Not 
only does the B = AL model with L odd allow an off-critical extension which breaks the 
reflection symmetry of the Dynkin diagram AL [ 101, but the Yang-Baxter algebra (4.6) of 
the critical model is also non-commuting at one site: 

Of course, this implies that the 'full' braid E$ obtained from 
[XJOJ). XjCv)] Z 0. (4.19) 

with y = exp(i), by' = - p y  (cf equation (4.1)) and the 'full' monoid E j  which is 
given by 

E I -  , - X j ( 3 X )  = e?.') + (4.21) 

( c y  = p:2.2)) & not commute. Here, 

+,$I) +e?) 

. .  . .  
is the function that enters in the inversion relation (4.7). It is therefore obvious that 
this model cannot be described in terms of the usual (one-colour) braid-monoid algebra. 
Furthermore, in the general case we were not able to find a gauge transformation (4.10) of 
the face weights which results in an equivalent model (i.e., a model with the same partition 
function on a torus) with a commuting algebra at one sitet. 

t We found such a gauge for the model laWed by G = A:' (cf the rem& on the gauge of the Af) vertex 
model below). 
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It is not possible to express the local face operator X j ( u )  in terms of the 'full' braids 
and monoids alone. One has to add at least one additional operator, which for instance one 
can choose to be 

F j  =P'jl.l)+e'jl*l)+py+e(j2.2' =Py.I)+e(,,"+2p'f'z) I '  (4.23) 

This yields 

sin(3X- U) sin(u) sin(:) sin(+) 
I + 7 E j  sin(3b) + sin(2~) sin(3~) 

x j ( U )  = 

sin(3X- U) - W) sin(u) F j .  

sin(31) sin(3A) 
14.24) 

The relations for the 'full' braids and monoids and the additional operator Fj can be 
computed from the relations for the coloured operators. As it tums out, the 'full' monoid 
E,  (4.21) fulfils the quadratic 

(Ej) '=(l  - ~ ~ - y - ~ ) E j  =(1-2cos(4x))Ej (4.25) 

( B j  - I) (Bj  + I )  ( B j  + y - ' I )  ( B j  - y 6 1 )  

whereas the 'full' braid B j  (4.20) and the additional operator F j  (4.23) satisfy the following 
quartic equations: 

(4.26) 
(4.27) 

= 0 

F~ ( F ~  - I) ( F ~  - 21) ( F ~  - (1 - y4 - p)~) = o . 
The commutator of the braid and the monoid fulfils a simple cubic relation 

[ B : , E I ]  C j ( C j - I ) ( C j + l )  = O  . (4.28) 
1 c j  = - 

y*6 - 1 

Furthermore, one finds the following commutation relations: 

[ F j ,  B;] = O  [ F j ,  E j ]  = - ( 1  + y 4 + y 4 ) C j  (4.29) 

to present just a few of the many relations that one can derive from the two-colour algebra 
So far, we have only considered some relations of operators at the same site. It tums 

out that the 'full' braids and monoids in fact fulfil all defining relations of the onecolour 
braid-monoid algebra except the twist relations. In particular, the onecolour braid-monoid 
relations (2.5) are satisfied. This actually follows from the third remark we made in the 
beginning of this section (see equations (3.9) and (3.10)). However, we want to emphasize 
again that neither E ]  nor Fj is a polynomial in the braid B j .  To describe the algebra 
completely in terms of B j .  E j ,  and F j ,  one needs of course additional relations with 
operators acting on two neighbouring sites which involve the operator Fj and which can 
be derived from the corresponding relations of the two-colour algebra. 

As we demonstrated, one can alternatively describe the local Yang-Baxter algebra of 
the dilute model in terms of the (spectral-parameter-independent) operators B j. E j .  and F j .  
However, it should be clear from this exercise that the formulation using the twocolour 
braid-monoid algebra has several advantages. It is simpler and certainly more natural in the 
sense that the two-colour algebra is a straightforward generalization of the Temperley-Lieb 
algebra and that it still allows a graphical interpretation and therefore is related to properties 
of coloured knots and links. 
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4.3. RSOS models labelled by the pair (&G) 
Again. we present two examples, one of which consists of a series of crossing-symmetric 
models. The models considered here are the dense two-colour loop models of 191. We 
are going to have a closer look at the RSOS models related to C$' since these models are 

U G r i m  and P A Pearce 

crossing symmetric. 
First, let us have a brief look at an IRF model related to the Ai1) vemx model 191. The - 

Yang-Baxter operator (4.4) for the model reads as follows: 

(4.30) 

where A = A"' = A'" is determined by equation (3.20). As for the models defined by 
equation (4.17) above, this model does not possess crossing symmetry. Again, the two- 
colour monoids e?') (a # 6) do not enter in the expression for the local face operator at 
all. 

We are more interested in our second example which is the above mentioned JRF model 
related to the '$I vertex model [9]. The local face operator (4.4) of this model has the 
form 

(4.31) 

I l l  with = 2'' (cf equation (3.21)). Here, the crossing symmetry is manifestly built 
in again, with crossing parameter 61. 

In contrast to the previous crossing-symmetric example (4.18). the local face operator is 
still commuting at one site, i.e., [XJ(U), Xj(u)] = 0. This stems from the fact that the model 
is labelled by two copies of the same graph and hence the twists dl) and 0'') coincide, 
guaranteeing the commutativity of the 'full' braid and monoid. Still, one cannot express 
the local face operator X ,(U) entirely in terms of the 'full' braids and monoids. One again 
has to inrroduce (at least) one additional operator, which in the present case can be chosen 
as 

F, = b:!"' fb?" (4.32) 

= A 

for instance. For the local face operator, one obtains 

sin(6x - U) sin(u) sin($)sin($(61- U)) 

+ sin(%) sin(61) 
x j(U) = I+- 

sin(65;) sin(6x) 

sin(6x - U) sin(u) (1- sin(61) - a) F j  

1 + 
2 cos (21) 

(4.33) 

which shows striking similarity to equation (4.24). The 'full' braids and monoids are given 
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in this case. where 
sin(21- U) sin(6x - U) 

sin(21) sin(6x) @(U) = 

(4.34) 

(4.35) 

is the function that enters in the inversion relation (4.7). The following relations hold 
( B j  - I ) ( B j + I ) ( B j + y - * f ) ( B j - y 6 1 )  = O  
(E  j)* = -Z(y4 + Y - ~ ) E  j = -4cOs (4x):)E j 
B . E . - E . B . -  6 . (4.36) I I -  I J - Y E I  
F j ( F j + I ) ( F j - I ) = O  
[ B : ,  F j ]  = [ E l ,  Fj] = 0. 

Obviously, this very much resembles a representation of the one-colour braid-monoid 
algebra where the braid satisfies a fourth-order polynomial equation. However, the monoid 
E j as well as the additional operator Fj  cannot be written as a polynomial in the braid B j. 

4.4. Vertex models of type (6-V,6-V) 

We are going to mention two models which fall into this category: the AY) and C y )  vertex 
models [ 19,201. These are of course equivalent to the unrestricted case of the two series of 
RSOS models defined above. 

This implies that the Yang-Baxter operators of the AY) and C$) vertex models are given 
by the same expressions as those of the related face models, i.e. by equation (4.30) for the 
A:]’ vertex model and by equation (4.31) for the Cy’ case. The only difference is that 
the representation of the two-colour braid-monoid algebra is now of vertex-type (6-V.6-V) 
with A“’ = A”’ = A and 1 = (A i n)/4 or x = (A zk 3rr)/4. It is given explicitly by 
equations (3.1 1H3.17) above. 

Of course, the results for the ‘full’ braids and monoids for the RSOS models related to 
GI’ (see equations (4.31H4.36)) also carry over to the vertex model. This may surprise 
many readers since the Yang-Baxter algebra of the Cg’ vertex model is usually known 
to be a Birman-Wenzl-Murakami (BWM) algebra [6,7], and hence a one-colour braid- 
monoid algebra where the braids satisfy a third-order polynomial equation. However, the 
vertex model we consider here differs from the e’’ vertex model of Jimbo [20] by a 
spectral-parameterdependent gauge transformation (4.1 I )  which affects the braid limit and 
therefore influences the algebraic relations. This is well known, see e.g. equation (6.12) 
of [8] where such a gauge transformation is used in order to obtain an ‘interesting’ braid 
group representation from the six-vertex model. The same happens in the case of the Ai2’ 
vertex model which will be discussed subsequently. 

4.5. Mixed vertex-RSOS models 

Here, we again have two examples which are linked to the RSOS models considered above, 
namely the Ay’ and A? vertex models [19,20] which are related to representations of 
type (6-V, Az). As above, these models are equivalent to the unrestricted case of the two 
corresponding series of RSOS models defined in (4.17) and (4.18). Hence the expressions 
for the Yang-Baxter operator of the A;’ and AY vertex models again coincide with those 



7456 

of the related face models which are given in equation (4.17) for the A t )  models and in 
equation (4.18) for the @’ models, respectively. The corresponding representation of the 
two-colour braid-monoid algebra is now the mixed representation which we called (6-V, 
A,) (see equations (3.34H3.37) above). 

For the AY vertex model, also known as the Izergin-Korepin model [34,35], the same 
comment applies as for the C;” vertex model before. Again, the vertex model obtained 
as the unrestricted case of the dilute A-D-E models differs from the Ai” vertex model of 
[34.19,20,35] by a spectral-parameter-dependent gauge (4.1 1). Of course, we ask if one 
can get a one-site commuting Yang-Baxter algebra for the dilute A-WE models by an 
appropriate spectral-parameterdependent gauge transformation (4.10). It tums out that this 
is at least possible for the dilute A!’ models where the gauge transformation of the vertex 
model carries over directly. For the other cases, notably for the most interesting case of the 
dilute A‘ models, we did not succeed in finding such a transformation (although we also 
tried to use the additional gauge freedom that one gains by the doubling of the states as we 
did in order to interpret the dilute models as two-colour models) and it is our opinion that 
at least a local gauge of the form (4.10) does not exist. 

The recent results of Wamaar and Nienhuis [9] suggest that there are in fact several 
infinite series of mixed vertex-RSOS models. These include models with an arbitrary 
number of colours, but all of them (except one or two) occur in the vettex-type 
representation. As an explicit example, they consider the AY’ loopvertex model which 
in our language would correspond to a mixed vertex-RSOS model of type (6-V, L7) which 
is not however crossing symmetric. In [9], these models are obtained by a partial mapping 
of well known vertex models [ 19,201 to loop models. The loop degrees of freedom in turn 
can be rewritten as an RSOS model (in the sense that their partition functions on an infinite 
lattice coincide: for more details see [91). The vertex models investigated in [91 in this 
context are the Ab”, A:”, and CA’’ vertex models [19,20]. 

4.6. Baxterization 

So far, we have presented several examples of critical exactly solvable models whose local 
Yang-Baxter operators can be written in terms of two-colour braid-monoid operators in 
certain matrix representations. Now, we address the question to what extent the algebraic 
structure is responsible for the solvability of the model, i.e., in particular for the inversion 
relation and the Yang-Baxter equation. Let us formulate the result as a theorem. 

Theorem . Let Py’, b*?”, and e y B ’  (a = 1,Z) denote a representation of the two-colour 
braid-monoid algebra and p?” = P“”P@’ . Th en the following statements hold. 

(i) If JQ“ = Zcos(A), f“.Z’(z) = f‘*.”(z) = z - 1, and if X j ( u )  is given by 
equation (4.17). then X j ( u )  generates a Yang-Baxter algebra (4.6) and the inversion relation 
(4.7) holds with e ( u )  = sin(A - ~)/sin(A). 

(ii) If @ = ,/@ = Zcos(A), f“~”(z) = f”.’](z) = z - 1, and if X , ( U )  is given 
by equation (4.30). then X j ( u )  generates a Yang-Baxter algebra (4.6) and the inversion 
relation (4.7) holds with e(u)  =sin@ - U )  sin(A). 

(iii) If @ = - Z C O S ( ~ ~ ) ,  ? ~ ( 2 )  = I ,  f ( 1 * 2 ) ( ~ )  = f @ , I ) ( z )  = z - 1, 
f”’(z) = z + 1, g”.”(z) = -2, and if X j ( u )  is given by eq. (4.18). then X j ( u )  

generates a Yang-Baxter algebra (4.6) and the inversion relation (4.7) holds with e(u) = 
sin(% - U )  sin(3X - U )  sin(zX) sin(31). 

(iv) If @ = k Q C 2 J  = -2cos(41), f“*’)(z) = f‘Z*”(z) = z - 1, and if X j ( u )  
is given by equation (4.31). then X j ( u )  generates a Yang-Baxter algebra (4.6) and the 

U G r i m  and P A  Pearce 
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inversion relation (4.7) holds with e(u) = sin(21- U) sin(61- U)/ sin(21) sin(61). 
The proofs consist of lengthy but straightfomard direct calculations. Note that the 

values of o'" and the functions f ("'(r)  do not always enter since we eliminated all braids 
b * y  in the expressions for the Yang-Baxter operator X,(u). Nevertheless. they are fixed 
indirectly, since performing a braid limit on these expressions determines the braids in terms 
of the other operators (up to normalization). 

5. Conclusions 

We defined a multi-colour braid-monoid algebra as a straightforward generalization of the 
one-colour case. The diagrammatic interpretation also generalizes from the one-colour case. 
This means that there is a direct relation to the theory of coloured knots and links. The 
notion of crossing symmetry was discussed using the pictorial representation of the algebra. 
Different general classes of representations which are connected to solvable lattice models 
were given explicitly. The two-colour algebra turned out to describe the Yang-Baxter 
algebra of recently constructed solvable models which are related to dilute one-colour loop 
models [ 10.11,9] and to dense two-colour loop models [9]. For several examples (which 
were taken from [9]), we expressed the Yang-Baxter operator of the models in terms of 
generators of the two-colour braid-monoid algebra and our main result is that we could 
actually prove that the solvahility of the model follows f" the algebraic structure alone. 
These include the so called dilute A-D-E models [IO, 111  which are of particular interest 
since the dilute A' models with L odd allow an integrable off-critical extension that breaks 
the symmetry of the Dynkin diagram AL. Hence, the physical meaning of the elliptic 
nome is that of a magnetic field. This has, for instance, the consequence that, although the 
two-dimensional king model in a magnetic field has not been solved, the dilute A3 model 
provides us with an exactly solvable model which belongs to the same universalib class. 

The dilute A-&E models possess another interesting property. Their Yang-Baxter 
algebra, which is the algebra generated by the local face operators, is non-commuting at 
one site. For these models, a description using only 'full' braids and monoids (which are 
obtained essentially by summing up the coloured objects) tumed out to be complicated. It 
involved at least one new object and we doubt that there is a nice diagrammatic interpretation 
for the relations satisfied by these operators. Our description of the dilute models as two- 
colour models is certainly more natural. For the rest of our examples, similar observations 

As one notices, there is an apparent similarity in the expressions for the Yang-Baxter 
operators of the RSOS models labelled by (9,Az) (equations (4.37)-(4.18jj and of those 
labelled by (8, 8) (equations (4.30H4.31)). This suggests that it might be possible to 
Baxterize 1121 any representation of the two-colour braid-monoid algebra with the same 
properties as the representation labelled by any pair (GIiJ, 8(')) of graphs. 

Conjecfure . LRt p y p ' ,  b* and e y s '  (a, 8 = 1,2) be a representation of the two-colour 
braid-monoid algebra with 

apply. 

Je"i = _(/$"')* - (k'"J)-* 
w(!Y) = +'"')-3 

p y z j  = (z - &))(z - k'q 
f '"J ' ( r )  = z - 1 
g'"'(2) = (z - k(U)) 

(a # 8 )  
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where k“’ and kCz} are arbitray complex numbers (of modulus one). Then this representation 
can be Baxterized to a (critical) solvable model whose Yang-Baxter operator is of the formt 

(5.2) 

U Grimm and P A Pearce 

X j ( U )  = f i ( U ) P : ‘ . ”  + f i (U)P‘ j2 .2’  + fXu)p:‘.Z’ + h ( U ) p y ’  
+fs(u)eyJ’ + fs(u)e‘jz.z‘ t j7(u)e(i.2) t fs(u)e (2.1) 

+fg(u)b?’” + f i & ) b y  + fil(u)by’” t f i z (u )by”  
where the coeficient functions f i ( u )  are products of trigonometric functions of the spectral 
parameter U involving (in general) both A ( I )  and A(2). 

Even more, one might conjecture that this extends to the m-colour case although we 
are not aware of any known restricted model which is related to the m-colour algebra with 
m z 2. Work to check these conjectures is currently in progress. 

If these conjectures tuum out to be correct, this would provide us with a method to obtain 
new solvable critical models. In some sense this procedure resembles the fusion (both have 
a diagrammatic interpretation acting on composite strings, cf e.g. 181) of solvable models 
but, as the above examples show clearly, it in fact leads to totally different models. 

Furthermore, all examples we presented in this paper in fact correspond to two-colour 
generalizations of the Temperley-Lieb algebra only. In particular, this means that the 
coloured braids hUil quadratic equations. One would certainly expect that one can find 
representations of the multi-colour algebra and solvable models related to them which, for 
instance, generalize the BWM algebra (where the braids fulfil a cubic equation). Hence our 
results open up a variety of interesting directions for further investigations. 
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